Использование генов углеводного обмена для улучшения качества клубней картофеля (Solanum tuberosum L.)

Автор: Слугина М.А., Кочиева Е.З.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Обзоры, проблемы

Статья в выпуске: 3 т.53, 2018 года.

Бесплатный доступ

Картофель ( Solanum tuberosum L.) относится к важнейшим сельскохозяйственным культурам во всем мире. Ценные пищевые и технические качества клубней картофеля в основном определяются накоплением в них крахмала. Крахмал состоит из линейных и разветвленных полимеров (соответственно амилоза и амилопектин). Три основные задачи современной селекции картофеля, направленной на улучшение продовольственных качеств клубней, включают увеличение их крахмалистости, получение клубней с повышенным содержанием амилозы или амилопектина, а также ингибирование процесса холодового осахаривания. Современные молекулярные и биотехнологические методы (маркер-опосредованная селекция, получение трансгенных растений, геномное редактирование и т.п.) позволяют изменять желаемые признаки растений. Однако вне зависимости от используемого подхода основополагающий этап, определяющий успешный результат работы, - это правильный выбор гена-мишени, что, в свою очередь, требует детального понимания метаболических путей синтеза и распада целевого продукта в растительных тканях...

Еще

Картофель, крахмал клубней, амилоза, амилопектин, холодовое осахаривание, углеводный метаболизм, ферменты углеводного метаболизма, аллельные варианты генов

Короткий адрес: https://sciup.org/142216548

IDR: 142216548   |   DOI: 10.15389/agrobiology.2018.3.450rus

Список литературы Использование генов углеводного обмена для улучшения качества клубней картофеля (Solanum tuberosum L.)

  • Хлесткин В.К., Пельтек С.Е., Колчанов Н.А. Гены-мишени для получения сортов картофеля (Solanum tuberosum l.) с заданными свойствами крахмала. Сельскохозяйственная биология, 2017, 52(1): 25-36 ( ) DOI: 10.15389/agrobiology.2017.1.25rus
  • Li L., Tacke E., Hofferbert H., Lübeck J., Strahwald J., Draffehn A. Validation of candidate gene markers for marker-assisted selection of potato cultivars with improved tuber quality. Theor. Appl. Genet., 2013, 126(4): 1039-1052 ( ) DOI: 10.1007/s00122-012-2035-z
  • Van Harsselaar J., Lorenz J., Senning M., Sonnewald U., Sonnewald S. Genome-wide analysis of starch metabolism genes in potato (Solanum tuberosum L.) BMC Genomics, 2017, 18: 37 ( ) DOI: 10.1186/s12864-016-3381-z
  • Duarte-Delgado D., Juyó D., Gebhardt C., Sarmiento F., Mosquera-Vásquez T. Novel SNP markers in InvGE and SssI genes are associated with natural variation of sugar contents and frying color in Solanum tuberosum Group Phureja. BMC Genet., 2017, 18: 23 ( ) DOI: 10.1186/s12863-017-0489-3
  • Frommer W., Sonnewald U. Molecular analysis of carbon partitioning in solanaceous species. J. Exp Bot., 1995, 46: 587-607.
  • Pfister B., Zeeman S. Formation of starch in plant cells. Cell. Mol. Life Sci., 2016, 73(14): 2781-2807 ( ) DOI: 10.1007/s00018-016-2250-x
  • Martin C., Smith A. Starch biosynthesis. Plant Cell, 1995, 7(7): 971-985 ( ) DOI: 10.1105/tpc.7.7.971
  • Bahaji A., Li J., Sánchez-López Á., Baroja-Fernández E., Muñoz F., Ovecka M., Almagro G., Montero M., Ezquer I., Etxeberria E., Pozueta-Romero J. Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields. Biotechnol Adv., 2014, 32(1): 87-106 ( ) DOI: 10.1016/j.biotechadv.2013.06.006
  • Zeeman S., Kossmann J., Smith A. Starch: its metabolism, evolution, and biotechnological modification in plants. Annu. Rev. Plant Biol., 2010, 61: 209-234 ( ) DOI: 10.1146/annurev-arplant-042809-112301
  • Naeem M., Tetlow I., Emes M. Starch synthesis in amyloplasts purified from developing potato tubers. The Plant Journal, 1997, 11(5): 1095-1103 ( ) DOI: 10.1046/j.1365-313X.1997.11051095.x
  • Smith A., Zeeman S., Thorneycroft D., Smith S. Starch mobilization in leaves. J. Exp. Bot., 2003, 54(382): 577-583 ( ) DOI: 10.1093/jxb/erg036
  • Smith A., Zeeman S., Smith S. Starch degradation. Annu. Rev. Plant Biol., 2005, 56: 73-98 (doi: 10.1146/annurev.arplant.56.032604.144257).
  • Zeeman S., Smith S., Smith A. The diurnal metabolism of leaf starch. Biochem. J., 2007, 401(1): 13-28 ( DOI: 10.1042/BJ20061393
  • Orzechowski S. Starch metabolism in leaves. Acta Biochim. Pol., 2008, 55(3): 435-445.
  • Dauvillée D., Chochois V., Steup M., Haebel S., Eckermann N., Ritte G., Ral J., Colleoni C., Hicks G., Wattebled F. Plastidial phosphorylase is required for normal starch synthesis in Chlamydomonas reinhardtii. Plant J., 2006, 48(2): 274-285 ( ) DOI: 10.1111/j.1365-313X.2006.02870.x
  • Fettke J., Albrecht T., Hejazi M., Mahlow S., Nakamura Y., Steup M. Glucose 1-phosphate is efficiently taken up by potato (Solanum tuberosum) tuber parenchyma cells and converted to reserve starch granules. New Phytol., 2010, 185(3): 663-675 ( ) DOI: 10.1111/j.1469-8137.2009.03126.x
  • Yu T., Kofler H., Häusler R., Hille D., Flügge U., Zeeman S., Smith A., Kossmann J., Lloyd J., Ritte G. The Arabidopsis sex1 mutant is defective in the R1 protein, a general regulator of starch degradation in plants, and not in the chloroplast hexose transporter. Plant Cell, 2001, 13(8): 1907-1918 ( ) DOI: 10.1105/TPC.010091
  • Hejazi M., Fettke J., Haebel S., Edner C., Paris O., Frohberg C., Steup M., Ritte G. Glucan, water dikinase phosphorylates crystalline maltodextrins and thereby initiates solubilization. The Plant Journal, 2008, 55(2): 323-334 ( ) DOI: 10.1111/j.1365-313X.2008.03513.x
  • Zeeman, S., Smith, S., Smith A. The breakdown of starch in leaves. New Phytol., 2004, 163(2): 247-261 ( ) DOI: 10.1111/j.1469-8137.2004.01101.x
  • Liu X., Song B., Zhang H., Li X.Q., Xie C., Liu J. Cloning and molecular characterization of putative invertase inhibitor genes and their possible contributions to cold-induced sweetening of potato tubers. Mol. Genet. Genomics, 2010, 284(3): 147-159 ( ) DOI: 10.1007/s00438-010-0554-3
  • Zhang H., Liu J., Hou J., Yao Y., Lin Y, Ou Y., Song B., Xie C. The potato amylase inhibitor gene SbAI regulates cold-induced sweetening in potato tubers by modulating amylase activity. Plant Biotechnol. J., 2014, 12(7): 984-993 ( ) DOI: 10.1111/pbi.12221
  • Clasen B., Stoddard T., Luo S, Demorest Z., Li J., Cedrone F., Tibebu R., Davison S., Ray E., Daulhac A., Coffman A., Yabandith A., Retterath A., Haun W., Baltes N., Mathis L., Voytas D., Zhang F. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol. J., 2016, 14(1): 169-176 ( ) DOI: 10.1111/pbi.12370
  • Kloosterman B., Vorst O., Hall R., Visser R., Bachem C. Tuber on a chip: differential gene expression during potato tuber development. Plant Biotechnol. J., 2005, 3(5): 505-519 ( ) DOI: 10.1111/j.1467-7652.2005.00141.x
  • Appeldoorn N., de Bruijn S., Koot-Gronsveld E., Visser R., Vreugdenhil D., van der Plas L. Developmental changes of enzymes involved in conversion of sucrose to hexose phosphate during early tuberisation of potato. Planta, 1997, 202(2): 220-226 ( ) DOI: 10.1007/s004250050122
  • Fu H., Kim S., Park W. High-leve1 tuber expression and sucrose inducibility of a potato Sus4 sucrose synthase gene require 5´ and 3´ flanking sequences and the leader intron. The Plant Cell, 1995, 7(9): 1387-1394.
  • Viola R., Roberts G., Haupt S., Gazzani S., Hancock R., Marmiroli N., Machray G., Oparka K. Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. Plant Cell, 2001, 13(2): 385-398 ( ) DOI: 10.1105/tpc.13.2.385
  • Zrenner R., Salanoubat M., Willmitzer L., Sonnewald U. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). The Plant Journal, 1995, 7(1): 97-107 ( ) DOI: 10.1046/j.1365-313X.1995.07010097.x
  • Avigad G. Sucrose and other disaccharides. In: Encyclopedia of plant physiology/T.A. Loewus, W. Tanner (eds.). Springer-Verlag, Heidelberg, 1982.
  • Koch K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol., 2004, 7(3): 235-246 ( ) DOI: 10.1016/j.pbi.2004.03.014
  • Baroja-Fernández E., Muñoz F., Montero M., Etxeberria E., Sesma M., Ovecka M., Bahaji A., Ezquer I., Li J., Prat S., Pozueta-Romero J. Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Plant Cell Physiol., 2009, 50(9): 1651-166 ( ) DOI: 10.1093/pcp/pcp108
  • Rathore R., Garg N., Garg S., Kumar A. Starch phosphorylase: role in starch metabolism and biotechnological applications. Crit. Rev. Biotechnol., 2009, 29(3): 214-224 ( ) DOI: 10.1080/07388550902926063
  • Nighojkar S., Kumar A. Starch phosphorylase: biochemical, molecular and biotechnological aspects. Genet. Eng. Biotechnol., 1997, 17(4): 189-202.
  • Sonnewald U., Basner A., Greve B., Steup M. A second L-type isozyme of potato glucan phosphorylase: cloning, antisense inhibition and expression analysis. Plant Mol. Biol., 1995, 27(3): 567-576.
  • Albrecht T., Koch A., Lode A., Greve B., Schneider-Mergener J., Steup M. Plastidic (Pho1-type) phosphorylase isoforms in potato (Solanum tuberosum L.) plants: expression analysis and immunochemical characterization. Planta, 2001, 213(4): 602-613.
  • Preiss J., Levi C. Starch biosynthesis and degradation. In: The biochemistry of plants. V. 3/J.B. Pridham (ed.). Academic Press, NY, 1980.
  • Newgard C., Hwang P., Fletterick R. The family of glycogen phosphorylases: structure and function. Crit. Rev. Biochem. Mol. Biol., 1989, 24(1): 69-99 ( ) DOI: 10.3109/10409238909082552
  • Dai W., Deng W., Cui W., Zhao Y., Wang X. Molecular cloning and sequence of potato granule-bound starch synthase. Acta Botanica Sinica, 1996, 38(10): 777-784.
  • Satoh H., Shibahara K., Tokunaga T., Nishi A., Tasaki M., Hwang S.K. Mutation of the plastidial a-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. Plant Cell, 2008, 20: 1833-1849 ( ) DOI: 10.1105/tpc.107.054007
  • Tetlow I., Emes M. A review of starch-branching enzymes and their role in amylopectin biosynthesis. IUBMB Life, 2014, 66(8): 546-558 ( ) DOI: 10.1002/iub.1297
  • Liu H., Yu G., Wei B., Wang Y., Zhang J., Hu Y., Liu Y., Yu G., Zhang H., Huang Y. Identification and phylogenetic analysis of a novel starch synthase in maize. Front. Plant Sci., 2015, 6: 1013 ( ) DOI: 10.3389/fpls.2015.01013
  • Hovenkamp-Hermelink J., Jacobsen E., Ponstein A., Visser R., Vos-Scheperkeuter G., Bijmolt E., de Vries J., Witholt B., Feenstra W. Isolation of an amylose-free starch mutant of the potato (Solanum tuberosum L.). Theor. Appl. Genet., 1987, 75(1): 217-221 ( ) DOI: 10.1007/BF00249167
  • Jacobsen E., Hovenkamp-Hermelink J., Krijgsheld H., Nijdam H., Pijnacker L., Witholt B., Feenstra W. Phenotypic and genotypic characterization of an amylose-free starch mutant of the potato. Euphytica, 1989, 44(1-2): 43-48 ( ) DOI: 10.1007/BF00022597
  • Visser R., Somhorst I., Kuipers G., Ruys N., Feenstra W., Jacobsen E. Inhibition of the expression of the gene for granule-bound starch synthase in potato by antisense constructs. Mol. Gen. Genet., 1991, 225(2): 285-296.
  • Van der Steege G., Nieboer M., Swaving J., Tempelaar M. Potato granule-bound starch synthase promoter-controlled GUS expression: regulation of expression after transient and stable transformation. Plant Mol. Biol., 1992, 20(1): 19-30.
  • Rohde W., Becker D., Kull B., Salamini F. Structural and functional analysis of two waxy gene promoters from potato. Journal of Genetics & Breeding, 1990, 44: 311-315.
  • Van de Wal M., Jacobsen E., Visser R. Multiple allelism as a control mechanism in metabolic pathways: GBSSI allelic composition affects the activity of granule-bound starch synthase I and starch composition in potato. Mol. Genet. Genomics, 2001, 265(6): 1011-1021 ( ) DOI: 10.1007/s004380100496
  • Visser R., Stolte A., Jacobsen E. Expression of a chimaeric granule-bound starch synthase-GUS gene in transgenic potato plants. Plant Mol. Biol., 1991, 17(4): 691-699 ( ) DOI: 10.1007/BF00037054
  • Kuipers G., Vreem J., Meyer H., Jacobsen E., Feenstra W., Visser R. Field evaluation of antisense RNA mediated inhibition of GBSS gene expression in potato. Euphytica, 1992, 59(1): 83-91 ( ) DOI: 10.1007/BF00025364
  • Flipse E., Keetels C., Jacobson E., Visser R. The dosage effect of the wild type GBSS allele is linear for GBSS activity, but not for amylose content: absence of amylose has a distinct influence on the physico-chemical properties of starch. Theor. Appl. Genet., 1996, 92(1): 21-127 ( ) DOI: 10.1007/BF00222961
  • Heilersig B., Loonen A., Janssen E., Wolters A., Visser R. Efficiency of transcriptional gene silencing of GBSSI in potato depends on the promoter region that is used in an inverted repeat. Mol. Genet. Genomics, 2006, 275(5): 437-449 ( ) DOI: 10.1007/s00438-006-0101-4
  • Haworth W., Peat S., Bourne E. Synthesis of amylopectin. Nature, 1944, 154: 236-238 ( ) DOI: 10.1038/154236a0
  • Hizukuri S. Polymodal distribution of the chain lengths of amylopectin, and its significance. Carbohyd. Res., 1986, 147(2): 342-347 ( ) DOI: 10.1016/S0008-6215(00)90643-8
  • Bertoft E., Seetharaman K. Starch structure. In: Starch: origins, structure and metabolism/I.J. Tetlow (ed.). Society for Experimental Biology, London, 2002.
  • Bhattacharyya M., Smith A., Ellis T., Hedley C., Martin C. The wrinkle-seeded character of peas described by Mendel is caused by a transposon-like insertion in a gene encoding starch branching enzyme. Cell, 1990, 60(1): 115-122 ( ) DOI: 10.1016/0092-8674(90)90721-P
  • Boyer C., Daniels R., Shannon J. Abnormal starch granule formation in Zea mays L. endosperms possessing the amylose-extender mutant. Crop Sci., 1976, 16: 298-301.
  • Schwall G., Safford R., Westcott R., Jeffcoat R., Tayal A. Production of very-high-amylose potato starch by inhibition of SBE A and B. Nature Biotechnology, 2000, 18: 551-554 ( ) DOI: 10.1038/75427
  • Tareke E., Rydberg P., Karlsson P., Eriksson S., Törnqvist M. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J. Agric. Food Chem., 2002, 50(17): 4998-5006 ( ) DOI: 10.1021/jf020302f
  • Shepherd L., Bradshaw J., Dale M., McNicol J., Pont S., Mottram D., Davies H. Variation in acrylamide producing potential in potato: segregation of the trait in a breeding population. Food Chem., 2010, 123(3): 568-573 ( ) DOI: 10.1016/j.foodchem.2010.04.070
  • Hou J., Zhang H., Liu J., Reid S., Liu T., Xu S., Tian Z., Sonnewald U., Song B., Xie C. Amylases StAmy23, StBAM1 and StBAM9 regulate cold-induced sweetening of potato tubers in distinct ways. J. Exp. Bot., 2017, 68(9): 2317-2331 ( ) DOI: 10.1093/jxb/erx076
  • Xin Z., Browse J. Cold comfort farm: the acclimation of plants to freezing temperatures. Plant, Cell & Environment, 2000, 23(9): 893-902 ( ) DOI: 10.1046/j.1365-3040.2000.00611.x
  • Mottram D., Wedzicha B., Dodson A. Food chemistry: Acrylamide is formed in the Maillard reaction. Nature, 2002, 419: 448-449 ( ) DOI: 10.1038/419448a
  • Halford N., Curtis T., Muttucumaru N., Postles J., Elmore J., Mottram D. The acrylamide problem: a plant and agronomic science issue. J. Exp. Bot., 2012, 63(8): 2841-2751 ( ) DOI: 10.1093/jxb/ers011
  • Zhang H., Hou J., Liu J., Xie C., Song B. Amylase analysis in potato starch degradation during cold storage and sprouting. Potato Res., 2014, 57(1): 47-58, ( ) DOI: 10.1007/s11540-014-9252-6
  • Weise S., Kim K., Stewart R., Sharkey T. b-Maltose is the metabolically active anomer of maltose during transitory starch degradation. Plant Physiol., 2005, 137(2): 756-761 ( ) DOI: 10.1104/pp.104.055996
  • Cottrell J., Duffus C., Paterson L., Mackay G., Allison M., Bain H. The effect of storage temperature on reducing sugar concentration and the activities of three amylolytic enzymes in tubers of the cultivated potato, Solanum tuberosum L. Potato Res., 1993, 36(2): 107-117 ( ) DOI: 10.1007/BF02358725
  • Wiberley-Bradford A., Busse J., Bethke P. Temperature-dependent regulation of sugar metabolism in wild-type and low-invertase transgenic chipping potatoes during and after cooling for low-temperature storage. Postharvest Biol. Tec., 2016, 115: 60-71 ( ) DOI: 10.1016/j.postharvbio.2015.12.020
  • Bhaskar P., Wu L., Busse J., Whitty B., Hamernik A., Jansky S., Buell C., Bethke P., Jiang J. Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato. Plant Physiol., 2010, 154(2): 939-948 ( ) DOI: 10.1104/pp.110.162545
  • Ye J., Shakya R., Shrestha P., Rommens C. Tuber-specific silencing of the acid invertase gene substantially lowers the acrylamide-forming potential of potato. J. Agric. Food Chem., 2010, 58(23): 12162-12167 ( ) DOI: 10.1021/jf1032262
  • Liu X., Zhang C., Ou Y., Lin Y., Song B., Xie C., Liu J., Li X.Q. Systematic analysis of potato acid invertase genes reveals that a cold-responsive member, StvacINV1, regulates cold-induced sweetening of tubers. Mol. Genet. Genomics, 2011, 286(2): 109-118 ( ) DOI: 10.1007/s00438-011-0632-1
  • Wu L., Bhaskar P., Busse J., Zhang R., Bethke P., Jiang J. Developing cold-chipping potato varieties by silencing the vacuolar invertase gene. Crop Sci., 2011, 51(3): 981-990 ( ) DOI: 10.2135/cropsci2010.08.0473
  • Draffehn A., Meller S., Li L., Gebhardt C. Natural diversity of potato (Solanum tuberosum) invertases. BMC Plant Biol., 2010, 10(1): 271 ( ) DOI: 10.1186/1471-2229-10-271
  • Slugina M., Snigir E., Ryzhova N., Kochieva E. Structure and polymorphism of a fragment of the Pain-1 vacuolar invertase locus in Solanum species. Mol. Biol. (Russia), 2013, 7(2): 215-221 ( ) DOI: 10.7868/S0026898413020146
  • Слугина М.А., Храпалова И.А., Рыжова Н.Н., Кочиева Е.З., Скрябин К.Г. Полиморфизм гена инвертазы Pain-1 у представителей рода Solanum. Доклады Академии наук, 2014, 454(1): 100 ( ) DOI: 10.7868/S0869565214010253
  • Slugina M., Shchennikova A., Kochieva E. TAI vacuolar invertase orthologs: the interspecific variability in tomato plants (Solanum section Lycopersicon). Mol. Genet. Genomics, 2017, 292(5): 1123-1138 ( ) DOI: 10.1007/s00438-017-1336-y
  • Rausch T., Greiner S. Plant protein inhibitors of invertases. Biochim. Biophys. Acta, 2004, 1696(2): 253-261 ( ) DOI: 10.1016/j.bbapap.2003.09.017
  • Brummell D., Chen R.K.Y., Harris J.C., Zhang H., Hamiaux C., Kralicek A.V., McKenzie M.J. Induction of vacuolar invertase inhibitor mRNA in potato tubers contributes to cold-induced sweetening resistance and includes spliced hybrid mRNA variants. J. Exp. Bot., 2011, 62(10): 3519-3534 ( ) DOI: 10.1093/jxb/err043
  • Glaczinski H., Heibges A., Salamini R., Gebhardt C. Members of the Kunitz-type protease inhibitor gene family of potato inhibit soluble tuber invertase in vitro. Potato Res., 2002, 45(2-4): 163-176 ( ) DOI: 10.1007/BF02736112
  • Liu X., Cheng S., Liu J., Ou Y., Song B., Zhang C., Lin Y., Li X., Xie C. The potato protease inhibitor gene, St-Inh, plays roles in the cold-induced sweetening of potato tubers by modulating invertase activity. Postharvest Biol. Tec., 2013, 86: 265-271 ( ) DOI: 10.1016/j.postharvbio.2013.07.001
  • Liu Q., Guo Q., Akbar S., Zhi Y., El Tahchy A., Mitchell M., Li Z., Shrestha P., Vanhercke T., Ral J.P., Liang G., Wang M.B., White R., Larkin P., Singh S., Petrie J. Genetic enhancement of oil content in potato tuber (Solanum tuberosum L.) through an integrated metabolic engineering strategy. Plant Biotechnol. J., 2017, 15(1): 56-67 ( ) DOI: 10.1111/pbi.12590
Еще
Статья обзорная