Использование метода самовозгорания для получения замещенного алюминием гексаферрита бария
Автор: Чернуха Александр Сергеевич, Зверева Анастасия Александровна, Зирник Глеб Михайлович, Мустафина Карина Эльвировна, Пашнин Денис Рафаэлевич, Дюкова Ольга Вадимовна, Малв Егор Викторович, Вепрева Анастасия Владимировна, Крошнина Валерия Вячеславовна, Некорыснова Надежда Сергеевна, Живулин Владимир Евгеньевич, Мосунова Татьяна Владимировна, Винник Денис Александрович
Журнал: Вестник Южно-Уральского государственного университета. Серия: Химия @vestnik-susu-chemistry
Рубрика: Физическая химия
Статья в выпуске: 3 т.13, 2021 года.
Бесплатный доступ
Оксидные материалы традиционно привлекают внимание исследователей по всему миру. Это обусловлено широкой областью их применения: электротехника, электроника, специальные покрытия, химические технлогии и т. д. Широко распространено легирование оксидных материалов различными элементами, такими как Al, Bi, Zn, Co, Sn, Ti, B, Sb и другими с целью тонкой настройки их физико-химических свойств. В частности, отдельный интерес представляет легирование гексаферрита бария алюминием, так как это позволяет изменять такие важнейшие параметры, как намагниченность насыщения (σ S ), коэрцитивную силу ( HC ), коэффициент прямоугольности петли гистерезиса ( K ), а также влиять на поле анизотропии и микроволновые свойства материала. Так как в случае получения BaAl x Fe12-x O19 классическим керамическим методом требуется тщательное перетирание исходных материалов, проведение предварительного спекания, высокая температура (выше 1300 °C) и длительность синтеза, было решено опробовать альтернативный метод получения замещенного алюминием гексаферрита бария. В качестве такового нами был выбран метод самовозгорания (self-combustion method). В ходе синтеза готовился раствор нитратов соответствующих металлов с лимонной кислотой. После нейтрализации и упаривания раствора, полученная масса нагревалась в муфельной печи для проведения процесса самовозгорания и удаления остаточного углерода. Финальное спекание образцов состава BaAl x Fe12-x O19 (при х = 0, 1, 2 и 3) проводилось в муфельной печи с презиционным регулятором температуры при 1100 °С в течение 4 часов. Полученные образцы исследовались методами порошковой дифрактометрии, сканирующей электронной микроскопии и рентгеноспектрального микроанализа. Установлено, что метод самовозгорания позволяет получить гомогенные образцы замещенного алюминием гексаферрита бария при более низкой температуре по сравнению с классическим керамическим методом. Также были установлены параметры структуры полученных образцов. Опробованный метод не только позволяет получать замещенный алюминием гексаферрит бария при меньших температурах, но и дает возможность легирования ферритов высоколетучими элементами.
Гексаферрит бария, замещение алюминием, baalxfe12-xo19, метод самовозгорания
Короткий адрес: https://sciup.org/147235330
IDR: 147235330 | DOI: 10.14529/chem210312
Список литературы Использование метода самовозгорания для получения замещенного алюминием гексаферрита бария
- 1. Gratzel M. Mesoporous Oxide Junctions and Nanostructured Solar Cells. Curr. Opin. Colloid Interface Sci., 1999, vol. 4, pp. 314–321. DOI: 10.1016/S1359-0294(99)90013-4. 2. Hadei M., Mesdaghinia A., Nabizadeh R., Mahvi A.Н., Rabbani S., Naddafi K. A Comprehensive Systematic Review of Photocatalytic Degradation of Pesticides Using Nano TiO2. Environ. Sci. Pollut. Res., 2021, vol. 28, no. 11, pp. 13055–13071. DOI:10.1007/s11356-021-12576-8. 3. Serrà A., Philippe L., Perreault, Garcia-Segura S. Photocatalytic Treatment of Natural Waters. Reality or Hype? The Case of Cyanotoxins Remediation. Water Res., 2020, vol. 188. DOI: 10.1016/j.waters.2020.116543. 4. Medhi R., Marquez M.D., Lee T.R. Visible-Light-Active Doped Metal Oxide Nanoparticles: Review of their Synthesis, Properties, and Applications. ACS Appl. Nano Mater., 2020, vol. 3, no. 7., pp. 6156–6185. DOI: 10.1021/acsanm.0c01035. 5. Pascariu P., Homocianu M. ZnO-based Ceramic Nanofibers: Preparation, Properties and Applications. Ceramics International. Elsevier Ltd, 2019, vol. 45, no. 9, pp. 11158–11173. DOI: 10.1016/j.ceramint.2019.03.113. 6. Saad S.R., Mahmed N., Abdullah M.M.A.B., Sandu A.V. Self-Cleaning Technology in Fabric: a Review. IOP Conf. Ser. Mater. Sci. Eng., 2016, vol. 133, no. 1, 012028. DOI: 10.1088/1757-899X/133/1/0112028. 7. Verbič A., Gorjanc M., Simončič B. Zinc Oxide for Functional Textile Coatings: Recent Advances. Coatings, 2019, vol. 9, no. 9, 550. DOI: 10.3390/coatings9090550. 8. Montazer M., Amiri M.M. ZnO Nano Reactor on Textiles and Polymers : Ex-Situ and In-Situ Synthesis, Application and Characterization. J. Phys. Chem. B, 2014, vol. 118, no. 6, pp. 1453–1470. DOI: 10.1021/jp408532r. 9. Narang S.B., Pubby K. Nickel Spinel Ferrites: A review. J. Magn. Magn. Mater., 2020, vol. 519, 167163. DOI: 10.1016/j.jmmm.2020.167163. 10. de Julián Fernández C., Sangregorio C., de la Figuera J., Belec B., Makovec D., Quesada D. Progress and Prospects of Hard Hexaferrites for Permanent Magnet Applications. J. Phys. D. Appl. Phys., 2021, vol. 54, no. 15, 153001. DOI: 10.1088/1361-6463/abd272. 11. Thakur P., Chahar D., Taneja S., Bhalla N., Thakur A. A Review on MnZn ferrites: Synthesis, Characterization and Applications. Ceramics International. Elsevier Ltd, 2020, vol. 46, no. 10, pp. 15740–15763. DOI: 10.1016/j.ceramnit.2020.03.287. 12. Talaat A., Suraj M.V., Byerly K., Wang A., Wang Y., Leea J.K., Ohodnicki Jr P.R. Review on Soft Magnetic Metal and Inorganic Oxide Nanocomposites for Power Applications. J. Alloys Compd. Elsevier, 2021, vol. 870, 159500. DOI: 10.1016/j.jallcom.2021.159500. 13. Houbi A., Zharmenov A.A., Atassi Y., Bagasharova Z.T., Mirzalieva S., Kadyrakunov K. Microwave Absorbing Properties of Ferrites and their Composites: A Review. J. Magn. Magn. Mater., 2021, vol. 529, 167839. DOI: 10.1016/j.jmmm.2021.167839. 14. Chandel M, Singh V.P., Jasrotia R, Singha K., Kumar R. A Review on Structural, Electrical and Magnetic Properties of Y-type Hexaferrites Synthesized by Different Techniques for Antenna Applications and Microwave Absorbing Characteristic Materials. AIMS Mater. Sci., 2020, vol. 7, no. 3, рр. 244–268. DOI: 10.3934/matersci.2020.3.244. 15. Srinivasan G., Zavislyak I.V., Popov M., Sreenivasulu G., Fetisov Y.K. Ferrite-Piezoelectric Heterostructures for Microwave and Millimeter Devices: Recent Advances and Future Possibilities. J. Japan Soc. Powder Powder Metall., 2014, vol. 61, pp. S25–S29. DOI: 10.2497/jspm.61.s25. 16. Mallmann E.J.J., Sombra A.S.B., Goes J.C., Fechine P.B.A. Yttrium Iron Garnet: Properties and Applications Review. Solid State Phenom., 2013, vol. 202, pp. 65–96. DOI: 10.4028/www.scientific.net/ssp.202.65. 17. Feng J., Matsushita N., Murakoso T., Nakagawa S., Naoe M. (1999). Effects of Al Substitution for Fe in Ba Ferrite thin Films. J. Magn. Magn. Mater., 1999, vol. 193, no. 1–3, pp. 152–154. DOI:10.1016/s0304-8853(98)00421-1. 18. Feng J., Matsushita N., Watanabe K., Nakagawa S., Naoe M. A1 Substituted Ba Ferrite Films with High Coercivity and Excellent Squarneness for Low Noise Perpendicular Recording Layer. J. Appl. Phys., vol. 85, 1999, pp. 6139–6141. DOI:10.1063/1.3579262. 19. Zhou, X.Z., Morrish A.H., Yang Z., Zeng H.-X. Co-Sn Substituted Barium Ferrite Particles. J. Appl. Phys., 1994, vol. 75, no. 10, pp. 5556–5558. DOI:10.1063/1.355687.
- 20. Qiu J., Zhang Q., Gu M., Shen H. Effect of Aluminum Substitution on Microwave Absorption Properties of Barium Hexaferrite. J. Appl. Phys., 2005, vol. 98, no. 10, 103905. DOI: 10.1063/1.2135412. 21. Huang J., Li D., Li R., Chen P., Zhang Q., Liu H., Lv W., Liu G., Feng Y. One-Step Synthesis of Phosphorus/Oxygen Co-doped g-C3N4/Anatase TiO2 Z-scheme Photocatalyst for Significantly Enhanced Visible-Light Photocatalysis Degradation of Enrofloxacin. J. Hazard. Mater.., 2019, vol. 386, 121634. DOI:10.1016/j.jhazmat.2019.121634. 22. Ustinov A.B., Tatarenko A.S., Srinivasan G., Balbashov A.M. (2009). Al Substituted Ba-Hexaferrite Single-Crystal Films for Millimeter-Wave Devices. J. Appl. Phys., 2009, vol. 105, no. 2, 023908. DOI:10.1063/1.3067759. 23. Thongmee S., Osotchan T., Winotai P., Tang I.M. Fluctuations in the Local Fields Due to Al3+ Ions Substitution in the M-Type Barium Hexaferrites, BaFe12-xAlxO12. Int. J. Mod. Phys. B, 1998, vol. 12, no. 27–28, pp. 2847–2855. DOI:10.1142/S0217979298001666. 24. Albanese G., Asti G., Batti P. On the Effects of Partial Substitution of Fe by Ga in SrFe12O19. Nuovo Cimento B, 1968, vol. 58, no. 2, pp. 467–479. DOI:10.1007/bf02712001. 25. Kubo O., Ogawa E. Barium Ferrite Particles for High Density Magnetic Recording. J. Magn. Magn. Mater., 1994, vol. 134, no. 2–3, pp. 376–381. DOI:10.1016/0304-8853(94)00147-2. 26. Pavlova S.G., Balbashov A.M., Rybina L.N. Single Crystal Growth From the Melt and Magnetic Properties of Hexaferrites-Aluminates. J. Cryst. Growth., 2012, vol. 351, no. 1, pp. 161–164. DOI:10.1016/j.jcrysgro.2011.12.053. 27. Vinnik D.A., Ustinov A.B., Zherebtsov D.A., Vitko V.V., Gudkova S.A., Zakharchuk I., Lähderant E., Niewa R. Structural and Millimeter-Wave Characterization of Flux Grown Al Substituted Barium Hexaferrite Single Crystals. Ceram. Int. Elsevier Ltd., 2015, vol. 41, no. 10, pp. 12728–12733. DOI:10.1016/j.ceramint.2015.06.105. 28. Xu A., Yang M., Qiao R., Du H., Sun C. Activity and Leaching Features of Zinc-Aluminum Ferrites in Catalytic Wet Oxidation of Phenol. J. Hazard. Mater. Elsevier, 2007, vol. 147, no. 1–2, pp. 449–456. DOI: 10.1016/j.hazat.2007.01.026. 29.Wang S., Ding J., Shi Y., Chen Y.J. High Coercivity in Mechanically Alloyed BaFe10Al2O19. J. Magn. Magn. Mater., 2000, vol. 219, no. 2, pp. 206–212. DOI:10.1016/s0304-8853(00)00450-9. 30. Albanese G., Carbucicchio M., Deriu A., Substitution of Fe3+by Al3+in the Trigonal Sites of M-Type Hexagonal Ferrites. Nuovo Cimento B, 1973, vol. 15, no. 2, pp. 147–158. DOI:10.1007/bf02894778. 31. Albanese G. Mössbauer Investigation of Aluminium Substituted Barium Hexaferrite in the Paramagnetic State. 1995, J. Magn. Magn. Mater., vol. 147, no. 3, pp. 421–426. DOI:10.1016/0304-8853(95)00063-1. 32. Thakur P., Taneja S., Sindhu D., Lüders U., Sharma A., Ravelo B., Thakur A. Manganese Zinc Ferrites: a Short Review on Synthesis and Characterization. J. Supercond. Novel. Magn., 2020, vol. 33, no. 6, pp. 1569–1584. DOI: 10.1007/s10948-020-05489-z. 33. Zhang H., Kajiyoshi K. Hydrothermal Synthesis and Size-Dependent Properties of Multiferroic Bismuth Ferrite Crystallites. J. Am. Ceram. Soc., 2010, vol. 93, no. 11, pp. 3842–3849. DOI: 10.1111/j.1551-2916.2010.03953.x. 34. Chen M., Fun R.H, Liu G.F., Wang X.A., Sun K. Magnetic Properties of Barium Ferrite Prepared by Hydrothermal Synthesis. Key Eng. Mater., 2015, vol. 655, pp. 178–181. DOI:10.4028/www.scientific.net/kem.655.178. 35. Fariñas J. C., Moreno R., Pérez A., García M.A., García-Hernández M., Salvador M.D., Borrell A. Microwave-assisted Solution Synthesis, Microwave Sintering and Magnetic Properties of Cobalt Ferrite. J. Eur. Ceram. Soc., 2018. vol. 38, no. 5, pp. 2360–2368. DOI: 10.1016/j.jeurceramsoc.2017.12.052. 36. Lagashetty A., Muttin V., Patil M.K., Ganiger S.K. Synthesis, Characterization and Studies of BaFe2O4/PMMA Nanocomposite. J. Polym. Bull., 2020, pp. 1–17. DOI:10.1007/s00289-020-03403-0. 37. Belous A., Tovstolytkin A., Fedorchuk O., Shlapa Yu., Solopan S., Khomenko B. Al-doped Yttrium Iron Garnets Y3AlFe4O12: Synthesis and Properties. J. Alloys Compd., 2021, vol. 856, p. 158140. DOI:10.1016/j.jallcom.2020.158140. 38. Prabhu S., Geerthana M., Sohila S., Bhalerao G.M., Harish S., Navaneethan M., Hayakawa Y., Ramesh R. Preparation of Cr3+-Substituted NiFe2O4 Nanoparticles and its Microwave Absorption Properties. J. Supercond. Novel Magn., 2019, vol. 32, no. 5, pp. 1423–1429. DOI: 10.1007/s10948-018-4835-0.
- 39. Cobos M.A., de la Presa P., Llorente I., García-Escorial A., Hernando A., Jiménez J.A. Effect of Preparation Methods on Magnetic Properties of Stoichiometric Zinc Ferrite. J. Alloys Compd. Elsevier Ltd, 2020, vol. 849, 156353. DOI: 10.1016/j.jallcom.2020.156353. 40. Fan L., Zheng H., Zhou X., Zhang H., Wu Q., Zheng P., Zheng L., Zhang Y. A Comparative Study of Microstructure, Magnetic, and Electromagnetic Properties of Zn2W Hexaferrite Prepared by Sol–Gel and Solid-State Reaction Methods. J. Sol-Gel Sci. Technol. Springer US, 2020, vol. 96, no. 3, pp. 604–613. DOI: 10.1007/s10971-020-05364-2. 41. Del Toro R.S., Pinto-Castilla S., Cañizale E., Ávila E., Díaz Y., Gutiérrez B., Sifontes A.B. Synthesis of SrFe(Al)O3−δ–SrAl2O4 Nanocomposites Via Green Route. Nano-Structures & Nano-Object., 2020. vol. 22, pp. 100437. DOI:10.1016/j.nanoso.2020.100437. 42. Rekhila G., Trari M. Physical Properties of the Ferrites NiFe2−xMnxO4 (0 ≤ x ≤ 2) Prepared by Sol–Gel Method. J. Mater. Sci. Mater. Electron, 2021, vol. 32, no. 2, pp. 1897–1906. DOI: 10.1007/s10854-020-04958-4. 43. Shin H.S., Kwon S.-J. A Suggestion on the Standard X-ray Powder Diffraction Pattern of Barium Ferrite. Journal of Powder Diffraction, 1992, vol. 7, no. 4, pp. 212–214. DOI: 10.1017/S088571560001873X. 44. Townes W.D., Fang J.H., Perrotta A.J. The Crystal Structure and Refinement of Ferrimagnetic Barium Ferrite, BaFe12O19. Book Series of the Zeitschrift für Krist., 1967, vol. 125, pp. 437–449.