Использование нейронных сетей для поиска нарушений укладки пациента на рентгенограммах органов грудной клетки

Автор: Борисов А.А., Васильев Ю.А., Владзимирский А.В., Омелянская О.В., Семенов С.С., Арзамасов К.М.

Журнал: Программные системы: теория и приложения @programmnye-sistemy

Рубрика: Медицинская информатика

Статья в выпуске: 3 (58) т.14, 2023 года.

Бесплатный доступ

В работе представлены результаты применения трансферного обучения глубоких сверточных нейронных сетей для задачи поиска рентгенограмм органов грудной клетки с нарушениями укладки и позиционирования пациента. Оцениваемые нейросетевые архитектуры: InceptionV3, Xception, ResNet152V2, InceptionResNetV2, DenseNet201, VGG16, VGG19, MobileNetV2, NASNetLarge. Для обучения и тестирования использовались рентгенограммы грудной клетки, полученные из открытых наборов данных и Единого радиологического информационного сервиса города Москвы. Все полученные модели имели метрики диагностической точности выше 95., при этом модели на основе архитектур ResNet152V2, DenseNet201, VGG16, MobileNetV2 имели статистически значимо лучшие метрики, чем другие модели. Наилучшие абсолютные значения метрик показала модель ResNet152V2 (AUC =0.999 ,чувствительность=0.987, специфичность=0.988, общая валидность =0.988, F1 мера = 0.988). Модель MobileNetV2 показала наилучшую скорость обработки одного исследования ($67.8 pm5.0$ ms). Широкое использование полученных нами алгоритмов способно облегчить создание больших баз данных качественных медицинских изображений, а также оптимизировать контроль качества при выполнении рентгенографических исследований органов грудной клетки.

Еще

Нейронные сети, глубокое обучение, контроль качества, рентген органов грудной клетки

Короткий адрес: https://sciup.org/143180584

IDR: 143180584   |   DOI: 10.25209/2079-3316-2023-14-3-95-113

Список литературы Использование нейронных сетей для поиска нарушений укладки пациента на рентгенограммах органов грудной клетки

  • Lampignano J., Bontrager K. L. Textbook of Radiographic Positioning and Related Anatomy, 8th edition.– St. Louis (Mo.): Elsevier Mosby.– 2014.– ISBN 978-0323083881.– 848 pp.
  • Broder J. Imaging the chest: the chest radiograph // Diagnostic Imaging for the Emergency Physician, chapter 5.– Elsevier.– 2011.– ISBN 978-1-4160-6113-7.– Pp. 185–296. https://doi.org/10.1016/B978-1-4160-6113-7.10020-1
  • Wang J., Li Zh., Pu L., Zhang K., Liu X., Zhou B. Research and application of orthotopic DR chest radiograph quality control system based on artificial intelligence // Journal of Biomedical Engineering.– 2020.– Vol. 37.– No. 1.– Pp. 158–168. https://doi.org/10.7507/1001-5515.201904017
  • Морозов С. П., Кузьмина Е. С., Ледихова Н. В., Владзимирский А. В., Трофименко И. А., Мокиенко О. А., Панина Е. В., Андрейченко А. Е., Омелянская О. В., Гомболевский В. А., Полищук Н. С., Шулькин И. М., Решетников Р. В. Мобилизация научно-практического потенциала службы лучевой диагностики г. Москвы в пандемию COVID-19 // Digital Diagnostics.– 2020.– Т. 1.– №1.– С. 5–11. https://doi.org/10.17816/DD51043
  • Морозов С. П., Ледихова Н. В., Панина Е. В., Владзимирский А. В., Фомичева Е. П. Качество работы рентгенолаборантов в условиях дистанционного взаимодействия с референс-центром лучевой диагностики с применениемтелемедицинскихтехнологий // Национальное здравоохранение.– 2021.– Т. 2.– №2.– С. 36–46. https://doi.org/10.47093/2713-069X.2021.2.2.36-46
  • van Leeuwen K. G., de Rooij M., Schalekamp S., vanGinneken B., Rutten M. J. C. M. How does artificial intelligence in radiology improve efficiency and health outcomes?Pediatr. Radiol..– 2022.– Vol. 52.– No. 11.– Pp. 2087–2093. https://doi.org/10.1007/s00247-021-05114-8
  • Willis Ch. E., Nishino T. K., Wells J. R., Ai H. A., Wilson J. M., Samei E. Automated quality control assessment of clinical chest images // Med. Phys..– 2018.– Vol. 45.– No. 10.– Pp. 4377–4391. https://doi.org/10.1002/mp.13107
  • Miotto R.,Wang F.,Wang Sh., Jiang X., Dudley J. T. Deep learning for healthcare: review, opportunities and challenges // Brief Bioinform..– 2018.– Vol. 19.– No. 6.– Pp. 1236–1246. https://doi.org/10.1093/bib/bbx044
  • Usman M., Zia T., Tariq A. Analyzing transfer learning of vision transformers for interpreting chest radiography // J. Digit. Imaging.– 2022.– Vol. 35.– No. 6.– Pp. 1445–1462. https://doi.org/10.1007/s10278-022-00666-z
  • Kim H. E., Cosa-Linan A., Santhanam N., Jannesari M.,Maros M. E., Ganslandt T. Transfer learning for medical image classification: a literature review // BMC Med. Imaging.– 2022.– Vol. 22.– id. 69.– 13 pp. https://doi.org/10.1186/s12880-022-00793-7
  • Szegedy Ch., Vanhoucke V., Ioffe S., Shlens J., Wojna Z. Rethinking the inception architecture for computer vision, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Las Vegas, NV, USA, 27–30 June 2016).– 2016.– Pp. 2818–2826. https://doi.org/10.1109/CVPR.2016.308
  • Chollet F. Xception: deep learning with depthwise separable convolutions, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Honolulu, HI, USA, 21–26 July 2017).– 2017.– Pp. 1800–1807. https://doi.org/10.1109/CVPR.2017.195
  • He K., Zhang X., Ren S., Sun J. Identity mappings in deep residual networks, Computer Vision – ECCV 2016 (Amsterdam, The Netherlands, October 11–14, 2016), Lecture Notes in Computer Science.– vol. 9908, eds. Leibe B., Matas J., Sebe N.,Welling M., Cham: Springer.– 2016.– ISBN 978-3-319-46493-0.– Pp. 630–645. https://doi.org/10.1007/978-3-319-46493-0_38
  • Szegedy Ch., Ioffe S., Vanhoucke V., Alemi A. Inception-v4, inception-ResNet and the impact of residual connections on learning (San Francisco, California, 2017) // Proceedings of the AAAI Conference on Artificial Intelligence.– Vol. 31.– No. 1, Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence AAAI 2017.– Pp. 4278–4284. https://doi.org/10.1609/aaai.v31i1.11231
  • Huang G., Liu Z., Van Der Maaten L., Weinberger K. Q. Densely connected convolutional networks // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.– 2017.– ISBN 978-1-5386-0457-1.– Pp. 2261–2269. https://doi.org/10.1109/CVPR.2017.243
  • Liu S., Deng W. Very deep convolutional neural network based image classification using small training sample size, 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR) (Kuala Lumpur, Malaysia, 03–06 November 2015).– 2015.– Pp. 730–734. https://doi.org/10.1109/ACPR.2015.7486599
  • Sandler M., Howard A., Zhu M., Zhmoginov A., Chen L.-C. MobileNetV2: inverted residuals and linear bottlenecks, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (Salt Lake City, UT, USA, 18–23 June 2018).– 2018.– Pp. 4510–4520. https://doi.org/10.1109/CVPR.2018.00474
  • Zoph B., Vasudevan V., Shlens J., Le Q. V. Learning transferable architectures for scalable image recognition // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (Salt Lake City, UT, USA, 18–23 June 2018).– 2018.– Pp. 8697–8710. https://doi.org/10.1109/CVPR.2018.00907
  • Морозов С. П., Владзимирский А. В., Кляшторный В. Г., Андрейченко А. Е., Кульберг Н. С., Гомболевский В. А. Клинические испытания программного обеспечения на основе интеллектуальных технологий (лучевая диагностика), Препринт № ЦДТ-2019-1.– М..– 2019.– 34 с. hUtRtpLs://www.researchgate.net/publication/334671685
  • Kanjanasurat I., Tenghongsakul K., Purahong B., Lasakul A. CNN–RNN Network Integration for the Diagnosis of COVID-19 Using Chest X-ray and CT Images // Sensors (Basel).– 2023.– Vol. 23.– No. 3.– id. 1356.– 12 pp. https://doi.org/10.3390/s23031356
  • Baccouche A., Garcia-Zapirain B., Elmaghraby A. S. An integrated framework for breast mass classification and diagnosis using stacked ensemble of residual neural networks // Sci. Rep..– 2022.– Vol. 12.– No. 1.– id. 12259.– 17 pp. https://doi.org/10.1038/s41598-022-15632-6
  • Nguyen T., Do T. H., Pham Q. D. A deep learning based system for Covid-19 positive cases detection using chest X-ray images // Proceedings of the 2022 13th International Conference on Information and Communication Technology Convergence (ICTC) (Jeju Island, Republic of Korea, 19–21 October 2022).– Pp. 1082–1087. https://doi.org/10.1109/ICTC55196.2022.9952741
  • Liu Z., Liu Y., Zhang W., Hong Y., Meng J., Wang J., Zheng Sh., Xu X. Deep learning for prediction of hepatocellular carcinoma recurrence after resection or liver transplantation: a discovery and validation study // Hepatol. Int..– 2022.– Vol. 16.– No. 3.– Pp. 577–589. https://doi.org/10.1007/s12072-022-10321-y
  • Борисов А. А., Семенов С. С., Арзамасов К. М. Использование трансферного обучения для автоматизированного поиска дефектов на рентгенограммах органов грудной клетки // Медицинская визуализация.– Т. 27.– №1.– С. 158–169. https://doi.org/10.24835/1607-0763-1243
  • Whaley J. S., Pressman B. D., Wilson J. R., Bravo L., Sehnert W. J., Foos D. H. Investigation of the variability in the assessment of digital chest X-ray image quality // J. Digit. Imaging.– 2013.– Vol. 26.– No. 2.– Pp. 217–226. https://doi.org/10.1007/s10278-012-9515-1
  • European Society of Radiology (ESR) What the radiologist should know about artificial intelligence — an ESR white paper // Insights Imaging.– 2019.– Vol. 10.– No. 1.– id. 44. https://doi.org/10.1186/s13244-019-0738-2
Еще
Статья научная