Study of motion amplitudes in large joints of upper and lower limbs and spine joints when using industrial exoskeletons

Автор: Geregey A.M., Bondarchuk E.V., Malahova I.S., Efimov A.R., Tah V.H., Sotin A.V.

Журнал: Российский журнал биомеханики @journal-biomech

Статья в выпуске: 4 (90) т.24, 2020 года.

Бесплатный доступ

One of the world trends of Industry 4.0 is the introduction of exoskeletal technologies into production processes. Manufacturers of industrial exoskeletons designed to reduce the negative impact of the work process on the human locomotive apparatus provide for the redistribution of the external load on the human body by means of various technical solutions. However, there is currently no uniform methodology for assessing the operational safety of exoskeletons. A significant biomechanical factor contributing to the safety of industrial exoskeletons as promising means of personal protection of the locomotor apparatus, is possibility to work without significant restrictions on the volume of movements. In this connection, the development of a methodology for objective quantification of the influence of structural and mass dimensions of industrial exoskeletons on the biomechanics of human movements is a topical task. This article presents the results of the measurements of the amplitude of movements in the large joints and joints of the spine, when performing the tests for flexion-extension, adduction-abduction and lateroflexion. The testing of volunteers was carried out on the clinical base of NII MT. The tests were performed both without the use of industrial exoskeletons (Group I) and with their application (Group II). The influence on the biomechanical parameters of volunteer movements by the structural characteristics of the industrial exoskeleton “Exochair” and two different models of the industrial exoskeleton “Exoatlant” was investigated. Parameters of movements of segments of the human body were measured with the help of inertial measuring sensors of the software and hardware complex “Biomechanika Trust-M”. Quantitative indicators have been identified which show the limitations of movements caused by the operation of different models of industrial exoskeletons. Thus, the use of the exoskeleton “Exochair” in deep seating limits the flexion in the hip joint by 67.1 %, in the knee joint by 56.1 %, in the lumbar thoracic spine by 61.9 %, and practically does not affect the flexion in the shoulder joint. The first model of the exoskeleton “Exoatlant” limits the amplitude of movements in the hip joint by 41.2 % at flexion and by 74.5 % at extension. At the same time, the second model limits the abduction of the shoulder joint by 20.5 %, and in the lumbar thoracic spine limits forward flexion by 17.3 %, rearward extension by 50.6 %, bending to the right by 46.4 %, and bending to the left by 40.3 %.

Еще

Industrial exoskeleton, inertial measurement sensors, personal protection equipment

Короткий адрес: https://sciup.org/146282186

IDR: 146282186   |   DOI: 10.15593/RZhBiomeh/2020.4.06

Статья научная