Исследование геропротекторных и радиопротекторных эффектов берберина и трихостатина а на модели Drosophila melanogaster

Автор: Уляшева Н.С., Прошкина Е.Н., Шапошников М.В., Москалев А.А.

Журнал: Известия Коми научного центра УрО РАН @izvestia-komisc

Рубрика: Научные статьи

Статья в выпуске: 6 (64), 2023 года.

Бесплатный доступ

Поиск препаратов, влияющих на замедление темпов старения и стимуляцию радиоустойчивости, является актуальной задачей биологии, экологии и медицины. В данной работе изучены эффекты влияния трихостатина А и берберина на продолжительность жизни, устойчивость к прооксиданту параквату и острому гамма-излучению плодовой мушки Drosophila melanogaster. Трихостатин А оказал более выраженный геропротекторный эффект, увеличив продолжительность жизни дрозофил на 3-9 %. Однако повышение радиоустойчивости наблюдали только после применения берберина у самцов. Их медианная выживаемость после действия гамма-излучения увеличилась на 25 %. Трихостатин А, напротив, повысил чувствительность мух к генотоксическому воздействию гамма-излучения, снизив выживаемость на 7-17 %.

Еще

Продолжительность жизни, стрессоустойчивость, радиоустойчивость, гамма-излучение, трихостатин а, берберин, drosophila melanogaster

Короткий адрес: https://sciup.org/149143630

IDR: 149143630   |   DOI: 10.19110/1994-5655-2023-6-94-102

Список литературы Исследование геропротекторных и радиопротекторных эффектов берберина и трихостатина а на модели Drosophila melanogaster

  • Da Costa, J. P. A synopsis on aging-theories, mechanisms and future prospects / J. P. da Costa, R. Vitorino, G. M. Silva [et al.] // Ageing Res Rev. – 2016. – Vol. 29. – P. 90-112.
  • Moskalev, A. A. Genetics and epigenetics of aging and longevity / A. A. Moskalev, A. M. Aliper, Z. Smit-McBride [et al.] // Cell Cycle. – 2014. – Vol. 13. – № 7. – P. 1063-77.
  • Dues, D. J. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress responsepathways / D. J. Dues, E. K. Andrews, C. E. Schaar [et al.] // Aging (Albany NY). – 2016. – Vol. 8. – № 4. – P. 777-95.
  • Marion, J. The effects of radiation on the longevity of female Drosophila subobscura / J. Marion, Lamb // Journal of Insect Physiology. –1964. –Vol. 10. – № 3. – P. 487-497.
  • Gaman, L. Can ageing be slowed: Hormetic and redox perspectives / L. Gaman, I. Stoian, V. Atanasiu // J Med Life. –2011. – Vol. 4. – № 4. – P. 346-51.
  • Belyi, A. A. The resistance of Drosophila melanogaster to oxidative, genotoxic, proteotoxic, osmotic stress, infection, and starvation depends on age according to the stress factor / А. А. Belyi, A. A. Alekseev, A. Y. Fedintsev [et al.] // Antioxidants (Basel). – 2020. – Vol. 9. – № 12. – P. 1239.
  • Прошкина, Е. Н. Ключевые молекулярные механизмы старения, биомаркеры и потенциальные интервенции / Е. Н. Прошкина, И. А. Соловьев, М. В. Шапошников, А. А. Москалев // Молекулярная биология. – 2020. – Т. 54, № 6. – С. 883-921.
  • McCubrey, J. A. Regulation of GSK-3 activity by curcumin, berberine and resveratrol : Potential effects on multiple diseases / J. A. McCubrey, K. Lertpiriyapong, L. S. Steelman [et al.] // Adv Biol Regul. – 2017. – Vol. 65. – P. 77-88.
  • Xu, Z. Rhizoma coptidis and berberine as a natural drug to combat aging and aging-related diseases via anti-oxidation and AMPK activation / Z. Xu, W. Feng, Q. Shen [et al.] // Aging Dis.– 2017.–Vol. 8. –№ 6.– P. 760-777.
  • Kooshki, L. The pivotal role of JAK/STAT and IRS/PI3K signaling pathways in neurodegenerative diseases: Mechanistic approaches to polyphenols and alkaloids / L. Kooshki, S.N Zarneshan, S. Fakhri [et al.] // Phytomedicine. – 2023. – Vol. 112. – P. 154686.
  • Gjorgieva Ackova, D. Alkaloids as natural NRF2 inhibitors: Chemoprevention and cytotoxic action in cancer / D. Gjorgieva Ackova, V. Maksimova, K. Smilkov [et al.] // Pharmaceuticals (Basel). – 2023. –Vol. 16. – № 6. – P. 850.
  • Vuddanda, P. R. Berberine: a potential phytochemical with multispectrum therapeutic activities / P. R. Vuddanda, S. Chakraborty, S. Singh // Expert Opin Investig Drugs. – 2010. – Vol. 19. –№ 10. – P. 1297-307.
  • Xiong, R.G. Anticancer effects and mechanisms of berberine from medicinal herbs: An update review / R. G. Xiong, S. Y. Huang, S. X. Wu [et al.] // Molecules. – 2022. – Vol. 27.– № 14. – P. 4523.
  • Lui, D. Natural isoquinoline alkaloid with antitumor activity: studies of the biological activities of berberine / D. Liu, X. Meng, D. Wu [et al.] // Front Pharmacol. – 2019. – Vol. 10. – № 9.
  • Rauf, A. Berberine as a potential anticancer agent: A comprehensive review / A. Rauf, T. Abu-Izneid, A. A. Khalil [et al.] // Molecules. - 2021. – Vol. 26. – № 23. – P. 7368.
  • Hashemzaei, M. A review on pain-relieving activity of berberine / M. Hashemzaei, R. Rezaee // Phytother Res. – 2021. – Vol. 35. – № 6. – P. 2846-2853.
  • Haftcheshmeh, S. M. Berberine as a natural modulator of inflammatory signaling pathways in the immune system: Focus on NF-κB, JAK/STAT, and MAPK signaling pathways / S.M. Haftcheshmeh, M. Abedi, K. Mashayekhi [et al.] // Phytother Res. – 2022. – Vol. 36. – № 3. – P. 116-123.
  • Gjorgieva Ackova, D. Alkaloids as natural NRF2 inhibitors: Chemoprevention and cytotoxic action in cancer / D. Gjorgieva Ackova, V. Maksimova, K. Smilkov [et al.] // Pharmaceuticals (Basel). – 2023. – Vol. 16. – № 6. – P. 850.
  • DiNicolantonio, J. J. Ferulic acid and berberine, via Sirt1 and AMPK, may act as cell cleansing promoters of healthy longevity / J. J. DiNicolantonio, M. F McCarty, S. I. Assanga [et al] // Open Heart. – 2022. – Vol. 9. – № 1. – P. e001801.
  • McCubrey, J. A. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs / J. A. McCubrey, K. Lertpiriyapong, L. S. Steelman [et al.] // Aging (Albany NY). – 2017. – Vol. 9. – № 6. – P. 1477-1536.
  • Rhodes, L.V. The histone deacetylase inhibitor trichostatin A alters microRNA expression profiles in apoptosis-resistant breast cancer cells / L. V. Rhodes, A. M. Nitschke, H. C. Segar [et al.] // Oncol Rep. – 2012. – Vol. 27. – № 1. – Р. 6-10.
  • Dekker, F. J. Small molecule inhibitors of histone acetyltransferases and deacetylases are potential drugs for inflammatory diseases / F. J. Dekker, T. Bosch, N. I. Martin // Drug Discov Today. – 2014. – Vol. 19. – № 5. – P. 654-60.
  • Pasyukova, E. G. Epigenetic enzymes: A role in aging and prospects for pharmacological targeting / E. G. Pasyukova, A. V. Symonenko, O. Y. Rybina, A. M.Vaiserman // Ageing Research Reviews. – 2021. – Vol. 67. – P. 1568-1637.
  • Navrotskaya, V. V. Berberine prolongs lifespan and stimulates locomotor activity of Drosophila melanogaster / V. V. Navrotskaya, G. Oxenkrug, L. I. Vorobyova, P. Summergrad // Am J Plant Sci. – 2012. – Vol. 3. – № 7A. – P. 1037-1040.
  • Navrotskaya, V. Berberine attenuated aging-accelerating effect of high temperature in Drosophila model / V. Navrotskaya, G. Oxenkrug, L.Vorobyova, P. Summergrad // Am J Plant Sci. – 2014. – Vol. 5. – № 3. – P. 275-278.
  • Tao, D. Trichostatin A extends the lifespan of Drosophila melanogaster by elevating hsp22 expression / D. Tao, J. Lu, H. Sun [et al.] // Acta Biochim Biophys Sin (Shanghai). – 2004. – Vol. 36. – № 9. – P. 618-622.
  • Dang, Y. Berberine ameliorates cellular senescence and extends the lifespan of mice via regulating p16 and cyclin protein expression / Y. Dang, Y. An, J. He [et al.] // Aging Cell. – 2020. – Vol. 19. – № 81.
  • Calvert, S. A network pharmacology approach reveals new candidate caloric restriction mimetics in C. elegans / S. Calvert, R. Tacutu, S. Sharifi [et al.] // Aging Cell. – 2016.–Vol. 15. – № 2. – P. 256-266.
  • Avila, A. M. Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy / A. M. Avila, B. G. Burnett, A. A. Taye [et al.] // J Clin Invest. – 2007. – Vol. 117. – № 3. – P. 659-71.
  • Lui, H. The Smn-independent beneficial effects of trichostatin A on an intermediate mouse model of spinal muscular atrophy / H. Liu, A. Yazdani, L. M. Murray [et al.] // PLoS One. – 2014. – Vol. 9. – № 7. – P. e101225
  • Xia, B. Transgenerational programming of longevity and reproduction by post-eclosion dietary manipulation in Drosophila / B. Xia, J.S. de Belle // Aging. – 2016. – Vol. 8. – № 5. – P. 1115–1134.
  • Solovev, I.A. Chronobiotics KL001 and KS15 extend lifespan and modify circadian rhythms of Drosophila melanogaster / I.A. Solovev, M.V. Shaposhnikov, A.A. Moskalev // Clocks Sleep. – 2021. – Vol. 3. – № 3. – P. 429-441.
  • Hilton, J. F. An algorithm for conducting exact Smirnov tests / J. F. Hilton, C. R. Mehta, N. R. Patel // Computational Statistics & Data Analysis. – 1994. – Vol. 17. – № 4. – P. 351–361.
  • Mantel, N. Evaluation of survival data and two new rank order statistics arising in its consideration / N. Mantel // Cancer Chemotherapy Reports. Part 1. – 1966. – Vol. 50. – № 3. – P. 163–170.
  • Martinez, R. L. Pretest for choosing between logrank and wilcoxon tests in the two-sample problem / R. L. Martinez, D.A. NaranjoJ // Metron. – 2012. – Vol. 68. – № 2. – P. 111–125.
  • Wang, C. Statistical methods for testing effects on “maximum lifespan” / C. Wang, Q. Li, D. Redden [et al.] // Mechanisms of Ageing and Development. – 2004. – Vol. 125. – № 9. – P. 629–632.
  • Han, S. K. OASIS2: online application for survival analysis 2 with features for the analysis of maximal lifespan and healthspan in aging research / S. K. Han, D. Lee, H. Lee [et al.] // Oncotarget. – 2016. – Vol. 7. – № 35. – P. 56147–56152.
  • Tambunan, U. S. Identification of a better Homo sapiens Class II HDAC inhibitor through binding energy calculations and descriptor analysis / U. S. Tambunan, E. K. Wulandari // BMC Bioinformatics. – 2010. – Vol. 11. – Suppl. 7(S16).
  • Gasmi, A. Berberine: Pharmacological features in health, disease and aging / A. Gasmi, F. Asghar, S. Zafar [et al.] // Curr Med Chem. – 2023.
  • Vaiserman, A. M. Cross-life stage and cross-generational effects of gamma irradiations at the egg stage on Drosophila melanogaster life histories / A. M. Vaiserman, N. M. Koshel, L. V. Mechova [et al.] // Biogerontology. – 2004. – Vol. 5. – № 5. – P. 327-37.
  • Vaisnav, M. Genome-wide association analysis of radiation resistance in Drosophila melanogaster / M. Vaisnav, C. Xing, H.C. Ku [et al.] // PLoS One. – 2014. – Vol. 9. – № 8. – P. e104858.
  • Gawarammana, I. B. Medical management of paraquat ingestion / I. B. Gawarammana, N. A Buckley // Br J Clin Pharmacol. – 2011. – Vol. 72. – № 5. – P. 745-57.
  • Gao, L. Toxicology of paraquat and pharmacology of the protective effect of 5-hydroxy-1-methylhydantoin on lung injury caused by paraquat based on metabolomics / L. Gao, H. Yuan, E. Xu [et al.] // Sci Rep. – 2020. – Vol. 10. – № 1. – P. 1790.
  • Zhang, F. Low dose of trichostatin A improves radiation resistance by activating Akt/Nrf2-dependent antioxidation pathway in cancer cells / F. Zhang, C. Shao, Z. Chen [et al.] // Radiat Res. – 2021. – Vol. 195. – № 4. – P. 366-367.
  • Zhao, Y. Lifespan extension and elevated hsp gene expression in Drosophila caused by histone deacetylase inhibitors / Y. Zhao, H. Sun, J. Lu [et al.] // J Exp Biol. – 2005. – Vol. 208 (Pt 4). – P. 697-705.
  • Guo, Y. Trichostatin A attenuates oxidative stress-mediated myocardial injury through the FoxO3a signaling pathway / Y. Guo, Z. Li, C. Shi [et al.] // Int J Mol Med. – 2017. – Vol. 40. – № 4. – P. 999-1008.
  • Lee, D. Inhibitory effects of berberine on lipopolysaccharide- induced inducible nitric oxide synthase and the high-mobility group box 1 release in macrophages / D. Lee, J. Bae, Y. K. Kim [et al.] // Biochem Biophys Res Commun. – 2013. – Vol. 431. – № 3. – P. 506-11.
  • Ma, X. The pathogenesis of Diabetes mellitus by oxidative stress and inflammation: Its inhibition by berberine / X. Ma, Z. Chen, L. Wang [et al] // Front Pharmacol. – 2018. – Vol. 9. – P. 782.
  • Wang, S. Trichostatin A enhances radiosensitivity and radiation-induced DNA damage of esophageal cancer cells / S. Wang, M. Song, B.Zhang // J Gastrointest Oncol. – 2021. – Vol. 12. – № 5. – P. 1985-1995.
  • Nagarajan, D. Trichostatin A inhibits radiation-induced epithelial-to-mesenchymal transition in the alveolar epithelial cells / D. Nagarajan, L. Wang, W. Zhao, X. Han // Oncotarget. – 2017. – Vol. 8. – № 60. – P. 101745-101759.
  • Kim, J.H. Sequence-dependent radiosensitization of histone deacetylase inhibitors trichostatin A and SK-7041 / J.H. Kim, I.H. Kim, J.H. Shin [et al.] // Cancer Res Treat. – 2013. – Vol. 45. – № 4. – P. 334-42.
  • Qiu, X. Evaluation of the antioxidant effects of different histone deacetylase inhibitors (HDACis) on human lens epithelial cells (HLECs) after UVB exposure / X. Qiu, X. Rong, J. Yang, Y. Lu // BMC Ophthalmol. – 2019. – Vol. 19. – № 1. – P. 42.
  • Peng, P. L. Synergistic tumor-killing effect of radiation and berberine combined treatment in lung cancer: the contribution of autophagic cell death / P. L. Peng, W. H. Kuo, H. C. Tseng, F. P. Chou // Int J Radiat Oncol Biol Phys. – 2008. – Vol. 70. – № 2. – P. 529-542.
  • Tower, J. Heat shock proteins and Drosophila aging / J. Tower // Exp Gerontol. – 2011. – Vol. 46. – № 5. – P. 355-62.
  • Wang, M. C. JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila / M. C. Wang, D. Bohmann, H. Jasper // Dev Cell. – 2003. – Vol. 5. – № 5. – P. 811-6.
  • La, X. Berberine-induced autophagic cell death by elevating GRP78 levels in cancer cells / X. La, L. Zhang, Z. Li [et al.] // Oncotarget. – 2017. – Vol. 8. – № 13. – P. 20909-20924.
  • Jiang, J. F. Mechanism underlying berberine’s effects on HSP70/TNFα under heat stress: Correlation with the TATA boxes / J. F. Jiang, F. Lei, Z. X. Yuan [et al.] // Chin J Nat Med. – 2017. – Vol. 15. – № 3. – P. 178-191.
  • Jiang, J. F. Novel effect of berberine on thermoregulation in mice model induced by hot and cold environmental stimulation / J. F. Jiang, Y. G. Wang, J. Hu [et al.] // PLoS One. – 2013. – Vol. 8. – № 1. – P. e54234.
  • Gao, L. Histone deacetylase inhibitor trichostatin A and autophagy inhibitor chloroquine synergistically exerts anti-tumor activity in H-ras transformed breast epithelial cells / L. Gao, X. Sun, Q. Zhang [et al.] // Mol Med Rep. – 2018. – Vol. 17. – № 3. – P. 4345-4350.
  • Zhang, Y. Attenuated DNA damage repair by trichostatin A through BRCA1 suppression / Y. Zhang, T. Carr, A. Dimtchev [et al.] // Radiat Res. – 2007. – Vol. 168. – № 1. – P. 115-24.
  • Campanero, M. R. The histone deacetylase inhibitor trichostatin A induces GADD45 gamma expression via Oct and NF-Y binding sites / M. R. Campanero, A. Herrero, V. Calvo // Oncogene. – 2008. – Vol. 27.–№ 9. – P. 1263-72.
  • Egidi, F. Modulation of chromatin conformation by the histone deacetylase inhibitor trichostatin A promotes the removal of radiation-induced lesions in ataxia telangiectasia cell lines / F. Egidi, S. Filippi, F. Manganello [et al.] // Mutat Res Genet Toxicol Environ Mutagen. – 2018. – Vol. 836(Pt A). – P. 109-116.
  • Plyusnina, E.N. Increase of Drosophila melanogaster lifespan due to D-GADD45 overexpression in the nervous system / E. N. Plyusnina, M. V. Shaposhnikov. A. A. Moskalev // Biogerontology. – 2011. – Vol. 12. – № 3. – P. 211-226.
  • Shaposhnikov, M. Lifespan and stress resistance in Drosophila with overexpressed DNA repair genes / M. Shaposhnikov, E. Proshkina. L. Shilova [et al.] // Sci Rep.– 2015. – Vol. 5. – P. 15299.
  • Koval, L. The role of DNA repair genes in radiation-induced adaptive response in Drosophila melanogaster is differential and conditional / L. Koval, E. Proshkina, M. Shaposhnikov, A. Moskalev // Biogerontology. – 2020. – Vol. 21. – № 1.– P. 45-56.
  • Gao, L. Histone deacetylase inhibitor trichostatin A and autophagy inhibitor chloroquine synergistically exerts anti-tumor activity in H-ras transformed breast epithelial cells / L. Gao, X. Sun, Q. Zhang [et al.] // Mol Med Rep. – 2018. – Vol. 17. – № 3. – P. 4345-4350.
  • Kovacs, T. Estradiol-induced epigenetically mediated mechanisms and regulation of gene expression / T. Kovacs, E. Szabo-Meleg, I. M. Abraham // Int J Mol Sci. – 2020. –Vol. 21. – № 9. – P. 3177.
  • Dai, R. Epigenetic modification of Kiss1 gene expression in the AVPV is essential for female reproductive aging / R. Dai, W. Xu, W. Chen [et al.] // Biosci Trends. – 2022. – Vol. 16 – № 5. – P. 346-358.
  • Roy, A. Epigenetic modifications acetylation and deacetylation play important roles in juvenile hormone action / A. Roy, S. R. Palli // BMC Genomics. – 2018. – Vol. 19. – № 1. – P. 934.
Еще
Статья научная