Moisture crystallization in bricks

Автор: Zheldakov Dmitry Yu., Kozlov Vladimir V., Kuznetsov Dmitry V., Sinitsin Dmitry A.

Журнал: Нанотехнологии в строительстве: научный интернет-журнал @nanobuild

Рубрика: Строительное материаловедение

Статья в выпуске: 6 т.12, 2020 года.

Бесплатный доступ

To solve theproblems concerning moisture behaviour in the material of construction's enclosure, especially at alternating temperatures, is very important for the correct calculations of resistance to heat conduction of construction's enclosure and, ultimately, for comfortable living conditions. However, there are still no methods for building enclosure's materials that could determine the temperature of moisture crystallization in the material in solid phase. The premiseof the research is that water incoming to the material of construction's enclosure, presenting in the construction's material in the form of oxides and salts, as a result of hydrolysis process of some elements, is an eutectic solution with unstable composition and concentration. Thus, the research of moisture crystallization process transfers from micro- area (when determining the temperature of crystallization by the size of material's pores) to the nano- area when researching the eutectic solution at the possible condition of hydrates formation. The experimental technique was developed to perform laboratory research of the process of moisture freezing. The techniquetakes into account that freeze-thaw process of moisture in solid body is studied at significant difference between mass of liquid phase and mass of solid phase. The method was simplified for the broad use at working conditions. The simplicity of the method aimed at obtaining experimental resultsis compensated by the developed mathematical method of processing the results of the research. Mathematical solution of the problem based on the comparison of freezing curves behaviour of the samples in dry and humidified samples. Apart from the temperature of moisture freezing, the developed method allowed obtaining additional characteristics of moisture states, such as amount of unfrozen moisture in construction's material, supercooling temperature, heat capacity of moisture in liquid and solid states, concentration of dissolved agents. Knowing the concentration of dissolved agents in the material, even without knowing the exact composition of these agents, allows manipulating the temperature of moisture freezing at the nanotechnology level.

Еще

Pore structure of the material, moisture crystallization, supercooling temperature, mathematical modeling of the heat exchange process

Короткий адрес: https://sciup.org/142225545

IDR: 142225545   |   DOI: 10.15828/2075-8545-2020-12-6-305-312

Статья научная