Study on heat under dynamic loading of rubber
Автор: Igumenova T.I., Shulga A.M.
Журнал: Вестник Воронежского государственного университета инженерных технологий @vestnik-vsuet
Рубрика: Фундаментальная и прикладная химия, химическая технология
Статья в выпуске: 1 (67), 2016 года.
Бесплатный доступ
A number of studies on heat buildup in tire rubber surface scan method samples using a thermal imaging camera. Investigated the exothermic chemical reaction mechanical destruction rubber when loading designs permanent cyclic stretching with deformation of the working zone 50%. Percentage of deformation of the working zone was chosen on the basis of the actual data on the stretch-compression zone "Rusk" tires, which is the maximum level difference of deformation during run-in. Experiment plan provided for periodic relaxation samples of at least 72 hours for more accurate simulation of operation process of structural products. Created and processed data on temperature changes in samples for bar and line profile for rubber compounds with the introduction of nanomodificator (fullerene-containing technical carbon) in comparison with the control sample without him. The data obtained reflect the nature of heat depending on the composition of the compound. Identified common patterns of thermal nature of physico-chemical process mechanical destruction rubbers. For rubber with nanomodifikatorom there has been an increase in the temperature interval reaction from a minimum to a maximum 2 degrees that is also linked to the rise in the average temperature of the reaction on the histogram also at 2-3 degrees of deformation under the same conditions and the level of cyclic loading. However, the temperature in the control sample that is associated with the beginning of the formation of hardened rubber structures, economies of Mallinza-Petrikeeva, occurs with delay twice compared with modified Fullerenes. Measurement of physic-mechanical indicators selected in the course of testing of samples showed the beginning of formation of structure with increased strength of samples in the sample temperature zone that corresponds to the thermal effect of èndotermičeskomu recombination reactions of macromolecules.
Короткий адрес: https://sciup.org/14040546
IDR: 14040546 | DOI: 10.20914/2310-1202-2016-1-156-158