Исследование влияния конструктивных параметров рабочего колеса на величину осевой нагрузки центробежного электронасосного агрегата

Автор: Кузнецова З.А., Синиченко М.И., Кузнецов А.Д., Клешнина И.А., Синьковский Ф.К.

Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau

Рубрика: Авиационная и ракетно-космическая техника

Статья в выпуске: 3 т.21, 2020 года.

Бесплатный доступ

В данной статье рассматривается и оценивается влияние некоторых конструктивных параметров на величину осевой нагрузки, возникающей при работе главного элемента активной жидкостной системы терморегулирования космического аппарата (КА) - электронасосного агрегата (ЭНА). Описаны и проанализированы основные причины возникновения осевой нагрузки в центробежном насосе с «осевым» принципом компоновки. Исследовались конструктивные параметры, влияющие на величину осевой нагрузки: положение рабочего колеса относительно диффузора ЭНА (положение выбиралось из расчета размерных цепей), наличие и размер разгрузочных отверстий в рабочем колесе, количество и форма лопастей рабочего колеса (рассмотрено количество лопастей 14 и 16). Были спроектированы и изготовлены рабочие колеса ЭНА с различным количеством и формами лопастей. Проведен ряд экспериментов по исследованию влияния всех перечисленных параметров: измерение расходно-напорных характеристик и величины осевой нагрузки при достижении определенного расхода. Дана оценка вклада каждого из перечисленных параметров на величину осевой нагрузки, возникающей при функционировании рабочего колеса. Была получена и проанализирована виброизмерительная информация на электродвигателе (ЭД) ДБЭ 63-25-6.3 с установленными поочередно рабочими колесами. В данном исследовании использовалась аддитивная технология печати DLP для изготовления рабочих колес, что значительно ускорило процесс испытаний. Полученные результаты способствуют расширению знаний о процессах, происходящих в рабочем колесе, позволяют осуществить выбор вышеперечисленных параметров на этапе проектирования, способных снизить величину осевой нагрузки, возникающей при работе центробежного ЭНА в системе терморегулирования КА. Результаты данной работы способны повысить надежность функционирования КА во весь срок активного существования, поскольку повышенная осевая нагрузка в ЭНА является причиной его преждевременной потери работоспособности.

Еще

Центробежный насос, рабочее колесо насоса, осевая нагрузка, система терморегулирования космического аппарата

Короткий адрес: https://sciup.org/148321988

IDR: 148321988   |   DOI: 10.31772/2587-6066-2020-21-3-389-399

Список литературы Исследование влияния конструктивных параметров рабочего колеса на величину осевой нагрузки центробежного электронасосного агрегата

  • Ley W., Wittman K., Hallmann W. Handbook of Space Technology, 2009, 884 p.
  • Sarafin T. P, Larson W. J. Spacecraft structures and mechanisms. From Concept to Launch, 2007, 850 p.
  • Lomakin A. A. Tsentrobezhnye i osevye nasosy [Centrifugal and axial pumps]. Moscow, Mashinostroenie Publ., 1996, 364 p.
  • Zimnitskiy V. A. et al. Lopastnye nasosy [Vane pumps]. Leningrad, Mashinostroenie Publ., 1986, 334 p.
  • Perevoshchikov S. I. Konstruktsiya tsentrobezhnykh nasosov (obshchie svedeniya) [The design of centrifugal pumps (general information)]. Tyumen, Tsogu Publ., 2013, 228 p.
  • Malyushenko V. V., Mikhaylov A. K. Ener-geticheskie nasosy [Energy pumps]. Moscow, Energoiz-dat Publ., 1981, 200 p.
  • Yarementko O. V. Ispytaniya nasosov [Pump Testing]. Moscow, Mashinostroenie Publ., 1976, 225 p.
  • Mikhaylov A. K., Malyushenko V. V. Lopastnye nasosy. Teoriya, raschet i konstruirovanie. [Vane pumps. Theory, calculation and construction]. Moscow, Mashi-nostroenie Publ., 1977, 288 p.
  • Kraev M. V., Lukin V. A., Ovsyannikov B. V. Maloraskhodnye nasosy aviatsionnykh i kosmicheskikh sistem [Low-flow pumps of aviation and space systems]. Moscow, Mashinostroenie Publ., 1985, 128 p.
  • Zlenko M. A., Nagaytsev M. V., Dovbysh V. M. Additivnye tekhnologii v mashinostroenii. Posobie dlya inzhenerov [Additive technologies in mechanical engineering. A manual for engineers]. Moscow, NAMI Publ., 2015, 220 p.
  • II. Baybakov O. V. Primenenie EVM v raschetakh protochnoy polosti lopastnykh gidromashin [The use of computers in the calculations of the flowing cavity of paddle hydraulic machines]. Moscow, MGTU im. N. E. Baumana Publ., 1982, 65 p.
  • Branshteyn L. Ya. Spravochnik konstruktora gidroturbin [Hydroturbine Designer Reference]. Moscow, Mashinostroenie Publ., 1971, 304 p.
  • Sazonov Yu. A., Mulenko V. V., Balaka A. Yu. [Computer modeling and development of a methodology for designing dynamic pumps and machines]. Territoriya neftegaz. 2011, No. 10, P. 34-36 (In Russ.).
  • Karelin V. Ya. Kavitatsionnye yavleniya v tsen-trobezhnykh i osevykh nasosakh [Cavitation phenomena in centrifugal and axial pumps]. Moscow, Mashinostroenie Publ., 1976, 325 p.
  • Loytsyanskiy L. G. Mekhanika zhidkosti i gaza [Mechanics of fluid and gas]. Moscow, Drofa Publ., 2003, 840 p.
Еще
Статья научная