Issues of ensuring the resistance of high-voltage solar arrays of spacecraft to the effects of secondary arc discharges
Автор: Valiullin V.V., Kochura S.G., Maksimov I.A., Nadiradze A.B.
Журнал: Siberian Aerospace Journal @vestnik-sibsau-en
Рубрика: Aviation and spacecraft engineering
Статья в выпуске: 1 vol.25, 2024 года.
Бесплатный доступ
We have considered the issues of ensuring the resistance of high-voltage solar battery (SB) of spacecraft to the effects of secondary arc discharges. Research in this area has been going on for more than 50 years, but the answer to all the questions has not yet been found. First of all, this is due to the complexity of the electrophysical processes occurring on the surface of the spacecraft in space and in laboratory conditions. The second reason is the random nature of secondary vacuum arc discharges, which requires the use of special test methods to confirm the effectiveness and reliability of selected design and technological solutions. Tests in conditions close to full-scale conditions do not allow us to solve this problem. We have given a retrospective review of publications on the physical features of secondary arcs arising on SB of spacecraft, the mechanisms of their initiation, experimental research and testing methods. We paid considerable attention to the issues of the occurrence of secondary arc discharges SB of the spacecraft in the conditions of ionospheric plasma and plasma generated by electric propulsion thrusters. We have shown that despite the large amount of accumulated data and knowledge, the transition from low-voltage SB to high-voltage SB remains a difficult scientific and technical problem, which requires additional research to solve. In addition, it is already necessary to start training personnel who possess a wide range of knowledge and are able to work on this topic. To do this, it seems advisable to organize sectoral research, as well as the allocation of targeted funds for the training of highly qualified specialists and their independent research. This approach will make it possible to solve the problem of creating high-voltage SB in the shortest possible time and prepare personnel for the development of this technology.
High voltage solar battery, spacecraft, magnetospheric plasma, ionospheric plasma, plasma of electric propulsion thruster, charging, electrostatic discharge, primary arc, secondary arc, leakage currents, training of highly qualified personnel
Короткий адрес: https://sciup.org/148329726
IDR: 148329726 | DOI: 10.31772/2712-8970-2024-25-1-85-105
Список литературы Issues of ensuring the resistance of high-voltage solar arrays of spacecraft to the effects of secondary arc discharges
- Ferguson D. C., HiIIard G. B, Vayner B. V. et al. High Voltage Space Solar Arrays. 53rd International Astronautical Congress. The World Space Congress (10–1 9 Oct 2002/Houston, Texas). NASA Glenn Research Center Cleveland, Ohio USA, 2002. P. 1–8. IAC-02-IAA.6.3.03.
- Gruzdev A. I., Shevtsov M. S. [Spacecraft Power Supply System With A Distrbuted Modular Structure Based On Photovoltaic Cells Integrated With Li-Ion Storage Batteries] Voprosy elektromekhaniki. Trudy VNIIEM. 2022, Vol. 189, No. 4, P. 15–20 (In Russ.).
- Jongeward G. A., Katz I. J., Carruth M. R. et al. High Voltage Solar Arrays for a Direct Drive Hall Effect Propulsion System. IEPC Paper 01–327, 27Ih International Electric Propulsion Conference, Pasadena, CA, 2001.
- Mikellides I. G., Jongeward G. Assessment of High-Voltage Solar Array Concepts for a Direct Drive Hall Effect Thruster System. 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2003. Doi: 10.2514/6.2003-4725.
- Manzella D. H., Hack K. High-Power Solar Electric Propulsion for Future NASA Missions. 50thAIAA/ASME/SAE/ASEE Joint Propulsion Conference. 2014. P. 3718. Doi: 10.2514/6.2014-3718.
- Kerslake T. W. Effect of Voltage Level on Power System Design for Solar Electric Propulsion Missions. Journal of Solar Energy Engineering. 2004, Vol. 126, No. 3, 936. 15 p. Doi: 10.1115/1.1710523.
- Goebel D. M., Filimonova O. S. High Voltage Solar Array Development for Space and Thruster- Plume Plasma Environments. IEEE Transactions on Plasma Science. 2022, Vol. 50, No. 3, P. 721–730. Doi: 10.1109/TPS.2022.3147424.
- Knauer W., Bayless J. R., Todd G. T., Ward J. W. High Voltage Solar Array Study. NASA CR-72675, Hughes Research Laboratories, 19708, 1970, 185 p.
- Herron B., Bayless J., Worden J. High voltage solar array technology. 9th Electric Propulsion Conference. Journal of Spacecraft and Rockets. 1972. P. 457–463. Doi: 10.2514/6.1972-443.
- Ralph R. Roe Jr. Low Earth Orbit Spacecraft Charging Design Handbook (NASA-HDBK-4006A). NASA, 2018, 76 p. Available at: https://standards.nasa.gov/sites/default/files/standards/NASA/A/0/nasa-hdbk-4006a.pdf.
- Ferguson D. C., Hoffmann R. C., Cooper R. J. et al. 1997–2002 Solar Array String Failures Revisited. Journal of Spacecraft and Rockets. 2017, Vol. 54, No. 3, P. 542–553. Doi: 10.2514/1.A33637.
- Akishin A. I. [Reducing the power of solar batteries of artificial Earth satellites under the influence of electrical discharges]. Perspektivnyye materialy. 2008, No. 4, P. 21–28 (In Russ.).
- Letin V. A., Akishin A. I., Bardina N. M. et al. [The occurrence of an arc discharge between sections of solar batteries in a vacuum]. Geliotekhnika, 1990, No. 1, P. 75–76 (In Russ.).
- Letin V. A., Bardina N. M., Zayavlin I. R. et al. [Experimental studies of the arc discharge between sections of solar batteries when irradiated with electrons in a vacuum]. Geliotekhnika. 1991, No 4, P. 23–26 (In Russ.).
- Akishin A. I., Baykal′tsev V. B., Tyutrin Y. I. [The effect of electronic flows on the protective coatings of solar batteries]. Fizika i khimiya obrabotki materialov. 1991, No. 4, P. 68–71 (In Russ.).
- Babkin G. V., Gostishchev E. A., Smekalin L. F. et al. [Conditions Of Low-Voltage Electrical Arc Origination Between Solar Battery Elements During Spacecraft Radiation Electrification]. Kosmonavtika i raketostroyeniye. 2003, Vol. 30, No. 1, P. 75–83 (In Russ.).
- Bezhayev Y. A., Zykov V. M., Ivanov V. V. et al. [A methodology for conducting accelerated life tests of solar batteries of spacecraft for resistance to radiation electrification factors in laboratory conditions]. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2008, Vol. 312, No. 2, P. 38–42 (In Russ.).
- Batrakov A. V., Dubrovskaya E. L., Karlik K. V. et al. [Physical modeling of secondary arcing in the range of ambient pressures from atmospheric level to vacuum level]. Izvestiya vuzov. Fizika. 2014, Vol. 57, No. 11, P. 7–11 (In Russ.).
- Batrakov V. A., Kochura S. G., Popov S. A. et al. [Hardware Set-Up For Diagnostics Of Spacecraft On-Board Equipment On Resistance To Arcing]. Reshetnevskiye chteniya. 2016, P. 324–326 (In Russ.).
- Batrakov A. V., Karlik K. V., Popov S. A. Sposob opredeleniya stoykosti k dugoobrazovaniyu elementov radioelektronnoy apparatury kosmicheskikh apparatov [A method for determining the resistance to arcing of elements of radioelectronic equipment of spacecraft]. Patent RF, No. 2539964, 2015. 7 p. (In Russ.).
- Cho M., Ramasamy R., Toyoda K. et al. Laboratory Tests on 110-Volt Solar Arrays in Ion Thruster Plasma Environment. Journal of Spacecraft and Rockets. 2003, Vol. 40, No. 2, P. 221–229. Doi: 10.2514/2.3956.
- Takahashi A., Khan A. R., Masui H. et al. Preliminary report on on‐orbit experiment on high voltage technology demonstration satellite. HORYU-II, 63rd International Astronautical Congress, IAC Paper IAC‐12‐D5.3.13, October 2012, Naples, Italy. P. 1–11.
- Shimizu T., Fukuda H., Su N. T. et al. Initial Results From an In-Orbit High-Voltage Experimental Platform: HORYU-IV. IEEE Transactions on Plasma Science. 2017, Vol. 45, No. 8, P. 1853–1863. Doi: 10.1109/tps.2017.2688725.
- ISO 11221:2011. Space Systems – Space Solar Panels – Spacecraft Charging Induced Electrostatic Discharge Test Methods. 28 p.
- Kesayev I. G. Katodnyye protsessy elektricheskoy dugi [Cathodic processes of an electric arc]. M.: Nauka Publ., 1968, 244 p. (In Russ.).
- Mesyats G. A. Ektony. Chast′ 1 [Actons. Part 1].Yekaterinburg, Nauka Publ., 1993, 184 p.
- Mesyats G. A. [Ecton or electron avalanche from metal]. Uspekhi fizicheskikh nauk. 1995, Vol. 165, No. 6, P. 601–626. Doi; 10.3367/UFNr.0165.199506a.0601 (In Russ.).
- Mesyats G. A., Berengol′ts S. A. [Mechanism of anomalous ion generation in vacuum arcs]. Uspekhi fizicheskikh nauk. 2002, Vol. 172, No. 10, P. 1113–1130. Doi: 10.3367/UFNr.0172.200210a.1113 (In Russ.).
- Barengol′ts S. A., Mesyats G. A. [Spontaneous Arc Quenching In The Ecton Model]. Pis′ma v zhurnal tekhnicheskoy fiziki. 2001, Vol. 27, No. 6, P. 82–85 (In Russ.).
- Lafferty J. M. (ed) Vacuum arcs. Theory and Application.Wiley, 1980, 372 p.
- Smeets R. P. P. Low-current behaviour and current chopping of vacuum arcs. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven, 1987, 140 p. Doi: 10.6100/IR264618.
- Mikhaylov P. S., Muzyukin I. L., Mamontov Y. I. et al. [Measurement of vacuum arc threshold current for nanostructured tungsten]. Proceedings of 8th International Congress on Energy Fluxes and Radiation Effects. Tomsk. Russia, 2022, P. 886–889. Doi: 10.56761/EFRE2022.C3-O-024701 (In Russ.).
- Cho M., Kitamura K., Ose T. et al. Statistical Number of Primary Discharges Required for Solar Array Secondary Arc Tests. Journal of Spacecraft and Rockets. 2009, Vol. 46, No. 2, P. 438–448. doi:10.2514/1.37798.
- Cho M., Goka T. Japanese Practices of Solar Array ESD Ground Tests. 9th Spacecraft Charging Technology Conference. Japan Aerospace Exploration Agency. Tsukuba. Japan, 2005.
- Cho M., Kim J.-H., Hosoda S. et al. Electrostatic Discharge Ground Test of a Polar Orbit Satellite Solar Panel. IEEE Transactions on Plasma Science. 2006, Vol. 34, No. 5, P. 2011–2030. Doi: 10.1109/TPS.2006.881935.
- Model′ kosmosa: Nauchno-informatsionnoye izdaniye v 2 t. Tom 2. Vozdeystviye kosmicheskoy sredy na materialy i oborudovaniye kosmicheskikh apparatov [The Model of space: A scientific and informational publication in 2 vol. Vol. 2. The impact of the space environment on spacecraft materials and equipment] Ed. M. I. Panasyuka, L. S. Novikova. Moscow, KDU Publ., 2007, 1145 p. (In Russ.).
- Snyder D. B., Ferguson D. C., Vayner et al. New Spacecraft-Charging Solar Array Failure Mechanism. Proceedings of the 6th Spacecraft Charging Technology Conference, AFRL Science Center, Hanscom AFB, MA, Nov. 1998, P. 297–301.
- Chigorko A. A. [Equipment for the study of electron-proton charging of high-resistance dielectrics under conditions of inverse potential distribution]. Izvestiya Tomskogo politekhnicheskogo universiteta. 2008. Vol. 312, No. 2. P. 99–106 (In Russ.).
- Ferguson D. C., Hoffmann R. C., Plis E. A. et al. Atypical Normal Potential Gradient Arcing on Solar Arrays. Journal of Spacecraft and Rockets. 2018, Vol. 55, No. 3, P. 698–711. Doi: 10.2514/1.a34017.
- Akishin A. I. Kosmicheskoye materialovedeniye. Metodicheskoye i uchebnoye posobiye [Space materials science. Methodical and educational manual]. Moscow, NIIYAF MGU Publ., 2007, 209 p.
- Inouye G. T. Implications Of Arcing Due To Spacecraft Charging On Spacecraft Emi Margins Of Immunity / NASA-CR-165442, March 10, 1981. 173 p.
- Hoang B., Wong F., Funderburk V. V. et al. Electrostatic discharge test with simulated coverglass flashover for multi-junction GaAs/Ge solar array design. 35th IEEE Photovoltaic Specialists Conference, 2010, P. 1118–1123. Doi: 10.1109/pvsc.2010.5614721.
- Ivanov V. A., Kirillov V. Y., Morozov E. P. Model′nyye i stendovyye issledovaniya elektrizatsii kosmicheskikh apparatov [Model and bench studies of spacecraft electrification]. Moscow, MAI Publ., 2012, 167 p. (In Russ.).
- Ferguson D. C., Vayner B. V. Flashover Current Pulse Formation and the Perimeter Theory. IEEE Transactions on Plasma Science. 2013, Vol. 41, No. 12, P. 3393–3401. Doi: 10.1109/tps.2013.2279760.
- Li Z., Liu J., Yoshimichi O. et al. Surface flashover in 50 years: theoretical models and competing mechanisms. High Voltage. 2023, Vol. 8, No. 5, P. 853–877. Doi; 10.1049/hve2.12340.
- Khasanshin R. K., Novikov L. S., Korovin S. B. [The influence of residual atmospheric pressure on the development of electrostatic discharges on the surface of protective glasses of solar batteries] Poverkhnost′. Rentgenovskiye, sinkhrotronnyye i neytronnyye issledovaniya. 2016, No. 10, P. 14–24. Doi: 10.7868/S0207352816100103 (In Russ.).
- Ferguson D., Crabtree P., White S. et al. Anomalous Global Positioning System Power Degradation from Arc-Induced Contamination. Journal of Spacecraft and Rockets, 2016, Vol. 53, No. 3, P. 464–470. Doi: 10.2514/1.A33438.
- Ferguson D., White S., Rast R. et al. The Case for Global Positioning System Arcing and High Satellite Arc Rates. IEEE Transactions on Plasma Science. 2019, Vol. 47, No. 8, P. 3834–3841. Doi: 10.1109/tps.2019.2922556.
- Bukreyev V. G., Nesterishin M. V., Kryuchkov P. A. et al. [Non-Radiation Degradation Of Solar Array Energy Performances For Meo Satellites]. Izvestiya vysshikh uchebnykh zavedeniy. Aviatsionnaya tekhnika. 2021, No. 1, P. 115–123 (In Russ.).
- Spacecraft Charging and Discharging. Design standard. Japan Aerospace Exploration Agency, 2012. 82 р.
- Cho M., Kawakita S., Nakamura M. et al. Number of Arcs Estimated on Solar Array of a Geostationary Satellite. Journal of Spacecraft and Rockets. 2005, Vol. 42, No. 4, P. 740–748. Doi: 10.2514/1.6694.
- Goebel D. M., Katz I. Fundamentals of Electric Propulsion: Ion and Hall Thrusters. Jet Propulsion Laboratory, California Institute of Technology. 2008, 514 p.
- Carruth M. R., Vaughn J. A., Bechtel R. T. et al. Electrical Breakdown of Space Station Freedom Surfaces. 30th Aerospace Science Meeting and Exhibit, January 6–9, 1992, Reno, NV, AIAA 92-0820, P. 1–7.
- Khayms V., Logan-Garbisch A., Kannenberg K. Measurements and Modeling of a Solar Array Floating Potential and Leakage Current in a Hall Thruster Plume Environment. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2005. Doi:10.2514/6.2005-3862.
- Kozlov O. V. Elektricheskiy zond v plazme [An electric probe in plasma]. Moscow, Atomizdat Publ., 1969, 291 p.
- Valiullin V. V., Nadiradze A. B. [High Voltage Solar Battery’s Potential Of Spacecraft In Plasma Generated By Electric Propulsion Thruster]. Vestnik Moskovskogo aviatsionnogo institute. 2023, Vol. 30, No. 3, P. 125–135 (In Russ.).
- Cho M., Saionji A., Toyoda K. Interaction between high voltage solar array and ion thruster plasma 28th International Electric Propulsion Conference, IEPC-2003, March, 17-21, Toulouse, France. CDROM, Published by CNRS, March, 2003, 0053-0303iepc-full.pdf., P. 1–10.
- Galfaro J. T., Ferguson D. C., Vayner B. V. et al. Inception of Snapover and gas Induced Glow Discharges. AIAA paper 2000-0245, Glenn Research Center, 2000, P. 1–8.
- Gabdullin F. F., Korsun A. G., Lavrenko E. G. et al. The Plasma Plume of the ISS Plasma Contactor Unit under the Effect of the Geomagnetic Field. 30th International Electric Propulsion Conference (Florence. Italy. 2007). P. 1–8.
- Tverdokhlebova E. M., Borisov B. G., Korsun A. G., Nadiradze A. B. et al. Simulation of nearelectrode processes of a electric discharge in the ISS environment. 44th AIAA Aerospace Sciences Meeting and Exhibit (09–12 January 2006; Reno. Nevada). Doi: 10.2514/6.2006-872.
- Tverdokhlebova E. M., Korsun A. G., Garkusha V. I. et al. Influence of Space Propulsions and Plasma Sources on Electric-Discharge Phenomena on the ISS. 4th International Spacecraft Propulsion Conference (Chia Laguna (Cagliari). Sardinia. Italy. 2004). P.78.1–78.6. ESA. ESA SP-555.
- Alred J., Mikatarian R., Barsamian H. Review of PCU Discharge Current: Dec 2000 to Aug.2003. ISS Plasma Technical Interchange Meeting. NASA, Marshall Space Fligh Center, Sept. 3–5, 2003, Huntsville, Alabama.
- Wartelski M., Theroude C., Ardura C. Self-consistent Simulations of Interactions between Spacecraft and Plumes of Electric Thrusters. 33rd International Electric Propulsion Conference, The George Washington University, Washington D. C., USA, October 6–10, 2013, IEPC-2013-73, P. 1–10.
- Kawakita S., Kusawake H., Takahashi M. et al. Sustained Arc Between Primary Power Cables of a Satellite. 2nd International Energy Conversion Engineering Conference, 2004. Doi: 10.2514/6.2004-5658.
- Siguier J.-M., Inguimbert V., Murat G. et al. Secondary arcing triggered by hypervelocity impacts on solar panel rear side cables with defects – Comparison with laser impacts. IEEE Transactions on Plasma Science, Institute of Electrical and Electronics Engineers. 2017, Vol. 45, No. 8, P. 1880–1886. Doi: 10.1109/TPS.2017.2686602.
- Artamonov V. S. Zashchita solnechnykh paneley v kosmose ot elektricheskogo proboya [Protection of solar batteries in space from electrical breakdown]. XI International Student Scientific Conference, Student Scientific Forum, 2019. 9 с. (In Russ.). Available at: https://scienceforum.ru/2019/article/2018017169?ysclid=lquiua4as9159647158 (accessed: 10.01.2024).
- Khasanshin R. K., Novikov L. S. [Changes in the transmission spectrum of K-208 glass under the influence of ionizing radiation and molecular fluxes.]. Poverkhnost′. Rentgenovskiye, sinkhrotronnyye i neytronnyye issledovaniya. 2014, No. 7, P. 83–87. Doi: 10.7868/S0207352814070099 (In Russ.).
- [Scientific and technological infrastructure of the Russian Federation: official website]. Moscow (In Russ.). Available at: https://ckp-rf.ru/catalog/usu/73590/ (accessed 04.05.2023).
- Balashov S. V., Ivanov V. V., Maksimov I. A. et al. [The Methodology To Ensure Immunity Of The Sattelite Equipment Of Plasma From The Stationary Plasma Thrusters] Vestnik SibGAU. 2006, No. 1(8), P. 76–80 (In Russ.).