From teaching experience. XIV. On the variety of tetrahedrons
Автор: Voytehovskiy Yu.
Журнал: Вестник геонаук @vestnik-geo
Рубрика: Научные статьи
Статья в выпуске: 4 (352), 2024 года.
Бесплатный доступ
The paper proposes the derivation of 25 combinatorial-geometric kinds of tetrahedrons belonging to 8 point symmetry groups. Among them are 3 simple forms: cubic (-43m), tetragonal (-42m) and rhombic (222) tetrahedrons; and 5 combinations: trigonal pyramid and monohedron (3m), 2 planar dihedrons (mm2, 2 kinds), 2 axial dihedrons (2, 3 kinds), planar dihedron and 2 monohedrons (m, 5 kinds), 4 monohedrons (1, 11 kinds). It is shown that tetrahedrons with symmetry 23, -4 and 3 - subgroups of the point symmetry group of the cubic tetrahedron - are impossible. The example is recommended for consideration in the course of crystallography on «simple forms and their combinations».
Tetrahedron, simple form, combinatorial geometric kind, combination of simple forms, symmetry point group
Короткий адрес: https://sciup.org/149145388
IDR: 149145388 | DOI: 10.19110/geov.2024.4.4