Изгиб композитного бруса

Автор: Сенашов С. И., Савостьянова И. Л., Яхно А. Н.

Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau

Рубрика: Информатика, вычислительная техника и управление

Статья в выпуске: 1 т.25, 2024 года.

Бесплатный доступ

Композиционные материалы широко используются практически во всех сферах науки, техники, без них современная жизнь не мыслима. Механика деформируемого твердого тела сформировалась и окрепла как наука на изучении материалов, используемых в 19 и 20 вв. Композиционные материалы потребовали новых способов как теоретического, так и экспериментального изучения. Особой проблемой стало определение напряжений и деформаций, возникающих в местах контакта матрицы с волокнами. Большую роль в современной технике играют композиты с пластической матрицей. Эти материалы успешно справляются с трещинообразованием и существенно замедляют рост трещин. В настоящей статье решена задача о напряженном состоянии композиционного бруса с упруго-пластической матрицей и упругими волокнами, расположенными вдоль оси бруса. Предполагается, что в зоне контакта матрицы с волокнами, по модели Ю. Н. Работнова, реализуется постоянное касательное напряжение, меньшее, чем предел текучести волокна. Один конец бруса закреплен, а на второй - действует постоянная сила, приложенная к центру тяжести, совпадающему с началом координат. Предполагается, что на свободной границе бруса и в местах контакта бруса с волокнами напряжения достигают предела пластичности. Задача решена с помощью законов сохранения. Это позволяет свести нахождение напряженного состояния в произвольной точке сечения к вычислению интегралов по внешней границе бруса и границам матрицы и волокон.

Еще

Композитный брус, напряженное состояние, законы сохранения дифференциальных уравнений

Короткий адрес: https://sciup.org/148328310

IDR: 148328310   |   DOI: 10.31772/2712-8970-2024-25-1-25-32

Список литературы Изгиб композитного бруса

  • Ахмед П. С., Абед М. С., Салим И. А. Экспериментальное исследование и численное моделирование баллистического воздействия на гибридный композит (оксид алюминия – тканый материал – эпоксидная смола – алюминий), используемый при изготовлении бронежилета // ПМТФ. 2023. № 4. C. 3–13.
  • Пан М., Чжоу С. М., Ху Б. Л., Чзан Ю. Ц. Свободные колебания композитной балки из функционально-градиентного в двух направлениях материала, армированной углеродными нанотрубками // ПМТФ. 2023. № 5. C. 166–178.
  • Кирпичников В. Ю., Кощеев А. П., Сятковский А. И. Экспериментальное исследование эффективности армированных вибропоглощающих покрытий // ПМТФ. 2022. № 1. C. 65–70.
  • Железнов Л. П., Серьезнов А. Н. Исследование нелинейного деформирования и устойчивости композитной оболочки при чистом изгибе и внутреннем давлении // ПМТФ. 2022. № 2. C. 207–216.
  • Голышев А. А., Долгова С. В. Влияние керамического волокна SiC в металломатричном композите на его стойкость при высокоскоростном нагружении // ПМТФ. 2022. № 6. C. 145–149.
  • Матвеенко В. П., Ошмарин Д. А., Юрлова Н. А. Использование электропроводящих композиционных материалов для дополнительного демпфирования смарт-систем на основе пьезо- элементов // ПМТФ. 2021. № 5. C. 45–57.
  • Петраков И. Е., Садовский В. М., Садовская О. В. Анализ изгиба композитных пластин с учетом различия сопротивлений растяжению и сжатию // ПМТФ. 2021. № 1. C. 172–183.
  • Федоренко А. Н., Федулов Б. Н., Ломакин Е. В. Моделирование ударного воздействия на демпфирующие элементы, изготовленные из композитных материалов // ПМТФ. 2021. № 1. C. 100–107.
  • Работнов Ю. Н. Механика деформируемого твердого тела. Москва: Наука, 1979. 743 с.
  • Vinogradov A. M. Local symmetries and conservation laws // Acta Appl. Math. 1984. No. 2. P. 21–78.
  • Senashov S. I., Vinogradov A. M. Symmetries and conservation laws of 2-dimensional ideal plasticity // Proc. Edinburg Math. Soc. 1988. No. 31. P. 415–439.
  • Senashov S. I., Savostyanova I. L. Using conservation laws to solve boundary value problems of the Moisila-Teodorescu system // J. Appl. Industr. Math. 2022. Vol. 25, No. 2.P. 101–109.
  • Gomonova O. V., Senashov S. I. Determining elastic and plastic deformation regions in a problem of unixaxial tension of a plate weakened by holes // J. Appl. Mech. Tech. Phys. 2021. Vol. 62, No. 1, P. 157–163.
  • Senashov S. I., Savostyanova I. L., Cherepanova O. N. Elastoplastic bending of the console with transverse force // J. of the Siberian Federal University. Math. and Phys. 2019. Vol. 12, No. 5, P. 637–643.
  • Сенашов С. И., Савостьянова И. Л. Об упругом кручении вокруг трех осей // Сибирский журнал индустриальной математики. 2021. Т. 24, № 1. С. 120–125.
  • Новацкий В. Теория упругости. М.: Мир, 1975. 872 с.
  • Милейко С. Т. Антони Келли и композиты сегодня. Ч. 2. Композиты с металлической матрицей // Композиты и наноструктуры. 2021. В. 1, № 3–4 (51–52). С. 59–107.
  • Милейко С. Т. Композиты и наноструктуры // Композиты и наноструктуры. 2009. Вып. 1. C. 6– 37.
  • Келли А. Инженерный триумф углеводородов // Композиты и наноструктуры. 2009. Вып. 1. C. 38–49.
Еще
Статья научная