Изменение соотношения с : n : p в составе фитомассы, почвы и биомассы почвенных микроорганизмов при нагревающем и иссушающем воздействии факела попутного газа

Автор: Дударева Д.М., Квиткина А.К., Юсупов И.А., Евдокимов И.В.

Журнал: Бюллетень Почвенного института им. В.В. Докучаева @byulleten-esoil

Статья в выпуске: 95, 2018 года.

Бесплатный доступ

Потепление климата приводит к существенным изменениям в структуре и функционировании наземных экосистем. Экосистемы вблизи факелов сжигания попутного газа могут выполнять роль модельных для изучения влияния потепления на почву и растительность. Если при проведении обычных манипуляционных экспериментов изменяют или контролируют какой-то экофизиологический фактор искусственно, то в рамках нашего исследования использовали антропогенно-измененные экологические условия, сложившиеся под воздействием горения факела. Целью нашего исследования было оценить эффект нагрева и иссушения на стехиометрические соотношения основных химических элементов (C : N : P) в фитомассе сосны, почве и почвенной микробной биомассе. Обнаружено, что в условиях абиотического стресса почвенное органическое вещество (ПОВ) и отмирающая биомасса почвенных микроорганизмов подвергались ускоренной минерализации, причем снижение относительного содержания С в составе устойчивых пулов ПОВ происходило параллельно с увеличением содержания С в самых лабильных пулах - водорастворимых...

Еще

Экологическая стехиометрия, глобальные изменения, минерализация

Короткий адрес: https://sciup.org/143165453

IDR: 143165453   |   DOI: 10.19047/0136-1694-2018-95-71-89

Список литературы Изменение соотношения с : n : p в составе фитомассы, почвы и биомассы почвенных микроорганизмов при нагревающем и иссушающем воздействии факела попутного газа

  • Практикум по агрохимии. М.: Изд-во Моск. ун-та, 2001. 689 с. (Workshop on agrochemistry, Moscow: Moscow State University, 2001, 689 p.).
  • Шавнин С.А., Юсупов И.А., Артемьева Е.П., Голиков Д.Ю. Влияние повышения температуры среды на формирование наземной растительности вблизи газового факела//Лесной журнал. 2006. № 1. С. 21-28. (Shavnin S.A., Yusupov I.A., Artemieva E.P., Golikov D.Yu. Influence of temperature increase on the formation of terrestrial vegetation near the gas flare, Forest Journal, 2006, No. 1, pp. 21-28.)
  • Anejionu O.C.D., Blackburn G.A., Whyat J.D. Satellite survey of gas flares: development and application of a Landsat-based technique in the Niger Delta, International Journal of Remote Sensing, 2014, V. 35, pp. 1900-1925.
  • Austin A.T, Yahdjian L., Stark J.M., Belnap J., Porporato A., Norton U., Ravetta D.A. et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems, Oecologia, 2004, V. 141, pp. 221-235.
  • Beier C., Emmett B.A., Penuelas J., Schmidt I.K., Tietema A., Estiarte M., Gundersen P. et al. Carbon and nitrogen cycles in European ecosystems respond differently to global warming, Science of the Total Environment, 2008, V. 407, pp. 692-697.
  • Borken W., Matzner E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils, Global Change Biology, 2009, V. 15, pp. 808-824.
  • Brookes P.C., Landman A., Pruden G., Jenkinson D.S. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil, Soil Biology & Biochemistry, 1985, V. 17, pp. 837-842.
  • Canadell J.G., Le Quéré C., Raupach M.R., Field C.B., Buitenhuis E.T., Ciais P., Conway T.J., et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks, Proceedings of the National Academy of Sciences, 2007, V. 104, pp. 18866-18870.
  • Cheesman A.W., Turner B.L., Reddy K.R. Interaction of phosphorus compounds with anion-exchange membranes: implications for soil analysis, Soil Science Society of America Journal, 2010, V. 74, pp. 1607-1612.
  • Ciais P., Reichstein M., Viovy N., Granier A., Ogée J., Allard V., Aubinet M., et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003, Nature, 2005, V. 437, pp. 529-533.
  • Cleveland C.C., Liptzin D. C: N: P stoichiometry in soil: is there a "Redfield ratio" for the microbial biomass?, Biogeochemistry, 2007, V. 85, pp. 235-252.
  • Cox P.M., Betts R.A., Jones C.D., Spall S.A., Totterdell I.J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model, Nature, 2000, V. 408, pp. 184-187.
  • Dijkstra F.A., Pendall E., Morgan J.A., Blumenthal D.M., Carrillo Y., LeCain D.R., Follett R.F., Williams D.G. Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland, New Phytologist, 2012, V. 196, pp. 807-815.
  • Elser J.J., Dowling T., Dobberfuhl D.A., O'Brien J. The evolution of ecosystem processes: ecological stoichiometry of a key herbivore in temperate and arctic habitats, Evolutionary Biology, 2000a, V. 13, pp. 845-853.
  • Elvidge C.D., Ziskin D., Baugh K.E., Tuttle B.T., Ghosh T., Pack D.W., Erwin E.H., et al. Fifteen year record of global natural gas flaring derived from satellite data, Energies, 2009, V. 2, pp. 595-622.
  • Elvidge C.D., Zhizhin M., Baugh K., Hsu F.C., Ghosh T. Methods for global survey of natural gas flaring from Visible Infrared Imaging Radiometer Suite data, Energies, 2016, V. 9, DOI: 10.3390/en9010014
  • Finzi A.C., Austin A.T., Cleland E.E., Frey S.D., Houlton B.Z., Wallenstein M.D. Responses and feedbacks of coupled biogeochemical cycles to climate change: examples from terrestrial ecosystems, Frontiers Ecology Environment, 2011, V. 9, pp. 61-67.
  • Knorr W., Prentice I.C., House J.I., Holland E.A. Long-term sensitivity of soil carbon turnover to warming, Nature, 2005, V. 433, pp. 298-301.
  • Kreyling J., Beier C. Complexity in Climate Change Manipulation Experiments, BioScience, 2013, V. 63, pp. 763-767.
  • Mao R., Chen H.-M., Zhang X.-H., Shi F.-X., Song C.-C. Effects of P addition on plant C: N: P stoichiometry in an N-limited temperate wetland of Northeast China, Science of the Total Environment, 2016, V. 559, pp. 1-6.
  • Nguyen T.T., Marschner P. Soil Respiration, Microbial Biomass and Nutrient Availability in Soil After Addition of Residues with Adjusted N and P Concentrations, Pedosphere, 2017, V. 27, pp. 76-85.
  • Heimann M., Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks, Nature, 2008, V. 451, pp. 289-292.
  • Sardans J., Penuelas J., Ogaya R. Drought-induced changes in C and N stoichiometry in a Quercus ilex Mediterranean forest, Forest Science, 2008, V. 54, pp. 513-522.
  • Sardans J., Penuelas J. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system, Plant Physiology, 2012, V. 160, pp. 1741-1761.
  • Sasaki T., Yoshihara Y., Jamsran U., Ohkuro T. Ecological stoichiometry explains larger-scale facilitation processes by shrubs on species coexistence among understory plants, Ecological Engineering, 2010, V. 36, pp. 1070-1075.
  • Setia R., Verma S.L., Marschner P. Measuring microbial biomass carbon by direct extraction -Comparison with chloroform fumigation-extraction, European Journal of Soil Biology, 2012, V. 53, pp. 103-106.
  • Sharma A., Wang J., Lennartson E.M. Intercomparison of MODIS and VIIRS fire products in Khanty-Mansiysk Russia: Implications for characterizing gas flaring from space, Atmosphere, 2017, V. 8, https://doi.org/10.3390/atmos8050087.
  • Sterner R.W., Elser J.J. Ecological stoichiometry: the biology of elements from molecules to the biosphere, Princeton University Press, Princeton, New Jersey, USA, 2002, 439 p.
  • Vance E.D., Brookes P.C., Jenkinson D.S. An extraction method for measuring soil microbial biomass C, Soil Biology & Biochemistry, 1987, V. 19, pp. 703-707.
  • Xu X., Thornton P.E., Post W.M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems, Global Ecology and Biogeography, 2013, V. 22, pp. 737-749.
  • Yang Y., Wang G., Yang L., Guo J. Effects of drought and warming on biomass, nutrient allocation, and oxidative stress in Abies fabri in eastern Tibetan Plateau, Journal of Plant Growth Regulation, 2013, V. 32, pp. 298-306.
  • Yevdokimov I., Larionova A., Blagodatskaya E. Microbial immobilisation of phosphorus in soils exposed to drying-rewetting and freeze-thawing cycles, Biology and Fertility of Soils, 2016, V. 52, pp. 685-696.
  • Yevdokimov I.V., Yusupov I.A., Larionova A.A., Bykhovets S.S., Glagolev M.V., Shavnin S.A. Thermal Impact of Gas Flares on the Biological Activity of Soils, Eurasian Soil Science, 2017, V. 50, pp. 1455-1462.
  • Zechmeister-Boltenstern S., Keiblinger K.M., Mooshammer M., Penuelas J., Richter A., Sardans J., Wanek W. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations, Ecological Monographs, 2015, V. 85, pp. 133-155.
  • Zhang X.-Z., Shen Z.-H., Fu G. A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau, Applied Soil Ecology, 2015, V. 87, pp. 32-38.
Еще
Статья научная