ИЗОТЕРМИЧЕСКАЯ ПЕТЛЕВАЯ АМПЛИФИКАЦИЯ LAMP В ФОРМАТЕ МИКРОУСТРОЙСТВ (ОБЗОР)

Автор: А. Н. Зубик, Г. Е. Рудницкая, А. А. Евстрапов

Журнал: Научное приборостроение @nauchnoe-priborostroenie

Рубрика: Приборостроение физико-химической биологии

Статья в выпуске: 1 т.31, 2021 года.

Бесплатный доступ

Изотермическая петлевая амплификация (LAMP) широко применяется в качестве быстрого и чувствительного метода диагностики и наиболее перспективна для проведения анализа в условиях ограниченных времени и ресурсов, например в местах оказания медицинской помощи. В работе рассмотрены основные принципы работы LAMP, способы детектирования продуктов реакции, а также микрофлюидные устройства и аналитические системы на основе LAMP, в том числе разработанные для экспресс-диагностики в условиях пандемии COVID-19.

Микрофлюидные устройства, изотермическая петлевая амплификация, LAMP, COVID-19, point-of-care (POC)

Короткий адрес: https://sciup.org/142226565

IDR: 142226565   |   DOI: 10.18358/np-31-1-i343

Список литературы ИЗОТЕРМИЧЕСКАЯ ПЕТЛЕВАЯ АМПЛИФИКАЦИЯ LAMP В ФОРМАТЕ МИКРОУСТРОЙСТВ (ОБЗОР)

  • 1. Notomi T., Okayama H., Masubuchi H., Yonekawa T.,
  • Watanabe K., Amino N., Hase T. Loop-mediated isothermal amplification of DNA // Nucleic Acids. Res. 2000.
  • Vol. 28, no. 12. e63 (7 p.).
  • 2. BIORON GmbH. URL: https://www.bioron.net/productcategory/polymerases/sd-polymerase/ (дата обращения
  • 10.10.2020).
  • 3. Ignatov K.B., Barsova E.V., Fradkov A.F., Blagodatskikh K.A., Kramorova T.V., Kramorov V.M. A strong
  • strand displacement activity of thermostable DNA polymerase markedly improves the results of DNA amplification // BioTechniques. 2014. Vol. 57, no. 2. P. 81–87.
  • 4. Шевяков А.Г., Ветчинин С.С., Бикетов С.Ф. Петлевая
  • изотермическая амплификация и иммуномагнитная
  • сепарация в диагностике микробной контаминации //
  • Сборник статей Международной научнопрактической конференции "Биотехнология и общество в XXI в.". Барнаул, 15–18 сентября 2015 г. Издательство: Алтайский государственный университет
  • (Барнаул). С. 93–96.
  • 5. Hataoka Y., Zhang L., Mori Y., Tomita N., Notomi T., Baba Y. Analysis of specific gene by integration of isothermal amplification and electrophoresis on poly(methyl methacrylate) microchips // Anal. Chem. 2004. Vol. 76,
  • no. 13. P. 3689–3693.
  • 6. Mori Y., Kitao M., Tomita N., Notomi T. Real-time turbidimetry of LAMP reaction for quantifying template
  • DNA // J. Biochem. Biophys. Methods. 2004. Vol. 59.
  • P. 145–157.
  • 7. Nagamine K., Hase T., Notomi T. Accelerated reaction by
  • loop-mediated isothermal amplification using loop primers // Mol. Cell. Probes. 2002. Vol. 16. P. 223–229.
  • 8. Eiken Chemical Co. URL:
  • http://loopamp.eiken.co.jp/e/lamp/ loop.html (дата обращения 10.10.2020).
  • 9. Zhang X., Lowe S.B., Gooding J.J. Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP) // Biosens. Bioelectron. 2014. Vol. 61.
  • P. 491–499. DOI: 10.1016/j.bios.2014.05.039
  • 10. Mori Y., Nagamine K., Tomita N., Notomi T. Detection of
  • loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation // Biochem Biophys Res Commun. 2001. Vol. 289.
  • P. 150–154. DOI: 10.1006/bbrc.2001.5921
  • 11. Abdul-Ghani R., Al-Mekhlafi A.M., Karanis P. Loopmediated isothermal amplification (LAMP) for malarial parasites of humans: Would it come to clinical reality as a pointof-care test? // Acta Trop. 2012. Vol. 122. P. 233–240.
  • 12. Mori Y., Kitao M., Tomita N., Notomi T. Real-time turbidimetry of LAMP reaction for quantifying template
  • DNA // J. Biochem. Biophys. Methods. 2004. Vol. 59.
  • P. 145–157.
  • 13. Mori Y., Notomi T. Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and costeffective diagnostic method for infectious diseases // J. Infect. Chemother.
  • 2009. Vol. 15. P. 62–69.
  • 14. Pourmand N., Karhanek M., Persson H.H.J., Webb C.D.,
  • Lee T.H., Zahradnikova A., Davis R.W. Direct electrical
  • detection of DNA synthesis // Proc. Natl. Acad. Sci. USA.
  • 2006. Vol. 103, no. 17. P. 6466–6470.
  • 15. Purushothaman S., Toumazou C., Ou C. Protons and single nucleotide polymorphism detection: a simple use for
  • the ion sensitive field effect transistor // Sens. Actuators B
  • Chem. 2006. Vol. 114. P. 964–968.
  • 16. Rothberg J.M., Hinz W., Rearick T.M., et al. An integrated
  • semiconductor device enabling non-optical genome sequencing // Nature. 2011. Vol. 475. P. 348–352.
  • 17. Toumazou C., Shepherd L.M., Reed S.C., et al. Simultaneous DNA amplification and detection using a pH-sensing
  • semiconductor system // Nat. Methods. 2013. Vol. 10.
  • P. 641–646.
  • 18. Tanner N.A., Zhang Y., Evans Jr. T.C. Visual detection of
  • isothermal nucleic acid amplification using pH-sensitive
  • dyes // BioTechniques. 2015. Vol. 58, no. 2. P. 59–68.
  • 19. Le T.H., Nguyen N.T.B., Truong N.H., De N.V. Development of mitochondrial loop-mediated isothermal amplification for detection of the small liver fluke opisthorchis
  • viverrini (opisthorchiidae; trematoda; platyhelminthes) //
  • J. Clin. Microbiol. 2012. Vol. 50. P. 1178–1184.
  • 20. Almasi M.A., Ojaghkandi M.A., Hemmatabadi A., Hamidi F., Aghaei S. Development of colorimetric loopmediated isothermal amplification assay for rapid detection
  • of the Tomato Yellow Leaf Curl Virus // J Plant Pathol
  • Microbiol. 2013. Vol. 4, no. 1. Article ID 153 (6 p.).
  • 21. Wastling S.L., Picozzi K., Kakembo A.S.L., Welburn S.C.
  • LAMP for human african trypanosomiasis: a comparative
  • study of detection formats // Plos. Negl. Trop. Dis. 2010.
  • Vol. 4, no. 11. e865 (6 p.).
  • А. Н. ЗУБИК, Г. Е. РУДНИЦКАЯ, А. А. ЕВСТРАПОВ
  • НАУЧНОЕ ПРИБОРОСТРОЕНИЕ, 2021, том 31, № 1
  • 26
  • 22. Tomita N., Mori Y., Kanda H., Notomi T. Loop-mediated
  • isothermal amplification (LAMP) of gene sequences and
  • simple visual detection of products // Nat. Protoc. 2008.
  • Vol. 3, no. 5. P. 877–882.
  • 23. Goto M., Honda E., Ogura A., Nomoto A., Hanaki K. Colorimetric detection of loopmediated isothermal amplification reaction by using hydroxyl naphthol blue // BioTechniques. 2009. Vol. 46, no. 3. P. 167–172.
  • 24. Safavieh M., Ahmed M.U., Sokullu E., Ng A., Braescu L.,
  • Zourob M. A simple cassette as point-of-care diagnostic
  • device for naked-eye colorimetric bacteria detection //
  • Analyst. 2013. Vol. 139. P. 482–487.
  • 25. Wang X., Fu Z., Chen X., Peng C., Xu X., Wei W., Li F.,
  • Xu J. Use of a novel metal indicator to judge loopmediated isothermal amplification for detecting the 35S
  • promoter // Anal. Bioanal. Chem. 2017. Vol. 409, no. 4.
  • P. 884–889.
  • 26. Oh S.J., Park B.H., Jung J.H., Choi G., Lee D.C.,
  • Kim D.H., Seo T.S. Centrifugal loop-mediated isothermal
  • amplification microdevice for rapid, multiplex and colorimetric foodborne pathogen detection // Biosens. Bioelectron. 2016. Vol. 75. P. 293–300.
  • 27. Gadkar, V.J., Goldfarb, D.M., Gantt, S. et al. Real-time
  • detection and monitoring of loop mediated amplification
  • (LAMP) reaction using self-quenching and de-quenching
  • fluorogenic probes // Sci Rep. 2018. Vol. 8. Article ID
  • 5548.
  • 28. Biswas G., Sakai M. Loop-mediated isothermal amplification (LAMP) assays for detection and identification of
  • aquaculture pathogens: current state and perspectives //
  • Appl. Microbiol. Biotechnol. 2014. Vol. 98, no. 7.
  • P. 2881–2895.
  • 29. Shang Y., Sun J., Ye Y., Zhang J., Zhang Y., Sun X. Loopmediated isothermal amplification-based microfluidic
  • chip for pathogen detection // Critical Reviewsin Food
  • Science and Nutrition. 2020. Vol. 60, no. 2. P. 201–224.
  • 30. Lee S., Lee C., Mark H., Meldrum D.R., Lin C. Efficient,
  • specific, compact hepatitis B diagnostic device: Optical
  • detection of the hepatitis B virus by isothermal amplification // Sens. Actuators B Chem. 2007. Vol. 127, no. 7.
  • P. 598–605.
  • 31. Fang X., Liu Y., Kong J., Jiang X. Loop-mediated isothermal amplification integrated on microfluidic chips for
  • point-of-care quantitative detection of pathogens // Anal.
  • Chem. 2010. Vol. 82, no. 7. P. 3002–3006.
  • 32. Santiago-Felipe S., Tortajada-Genaro L.A., Carrascosa
  • J., Puchades R., Maquieira A. Real-time loop-mediated
  • isothermal DNA amplification in compact disc microreactors // Biosens. Bioelectron. 2016. Vol. 79. P. 300–
  • 306.
  • 33. Yan H., Zhu Y., Zhang Y., Wang L., Chen J., Lu Y., Xu Y.,
  • Xing W. Multiplex detection of bacteria on an integrated
  • centrifugal disk using bead-beating lysis and loopmediated amplification // Scientific Reports. 2017. Vol. 7.
  • Article ID 1460.
  • 34. Chen J., Xu Y., Yan H., Zhu Y., Wang L., Zhang Y., Lu Y.,
  • Xing W. Sensitive and rapid detection of pathogenic bacteria from urine samples using multiplex recombinase polymerase amplification // Lab Chip. 2018. Vol. 18.
  • P. 2441–2452.
  • 35. Kiatpathomchai W., Jaroenram W., Arunrut N., Jitrapakdee S., Flegel TW. Shrimp Taura syndrome virus detection
  • by reverse transcription loop-mediated isothermal amplification combined with a lateral flow dipstick // Journal of
  • Virological Methods. 2008. Vol. 153. P. 214–217.
  • 36. HybriDetect, Milenia Biotec GmbH. URL:
  • https://www.milenia-biotec.com/en/product/hybridetect/
  • (дата обращения 10.10.2020).
  • 37. Jung J.H., Oh S.J., Kim Y.T., Kim S.Y., Kim W.-J., Jung J.
  • Seo T.S. Combination of multiplex reverse-transcription
  • loop-mediated isothermal amplification with an immunochromatographic strip for subtyping influenza A virus //
  • Anal. Chim. Acta. 2015. Vol. 853. P. 541–547.
  • 38. Jung J.H., Park B.H., Oh S.J., Choi G., Seo T.S. Integration of reverse transcriptase loop-mediated isothermal
  • amplification with an immunochromatographic strip on
  • a centrifugal microdevice for influenza A virus identification // Lab Chip. 2015. Vol. 15. P. 718–725.
  • 39. Zhu H., Fohlerova Z., Pekarek J., Basova E., Neuzil P.
  • Recent advances in lab-on-a-chip technologies for viral
  • diagnosis // Biosens. Bioelectron. 2020. Vol. 153. Article
  • ID 112041.
  • 40. Hsieh K., Patterson A.S., Ferguson B.S., Plaxco K.W.,
  • Soh H.T. Rapid, sensitive, and quantitative detection of
  • pathogenic DNA at the point of care through microfluidic
  • electrochemical quantitative loop-mediated isothermal
  • amplification // Angew. Chem. Int. Ed. Engl. 2012.
  • Vol. 51. P. 4896–4900.
  • 41. Ahmed M.U., Saito M., Hossain M.M., Rao S.R., Furui S.,
  • Hino A., Takamura Y., Takagi M., Tamiya E. Electrochemical genosensor for the rapid detection of GMO using loop-mediated isothermal amplification // Analyst.
  • 2009. Vol. 134. P. 966–972.
  • 42. Ahmed M.U., Nahar S., Safavieh M., Zourob M. Real-time
  • electrochemical detection of pathogen DNA using electrostatic interaction of a redox probe // Analyst. 2013.
  • Vol. 138. P. 907–915.
  • 43. Chuang T.L., Wei S.C., Lee S.Y., Lin C.W. A polycarbonate based surface plasmon resonance sensing cartridge
  • for high sensitivity HBV loop-mediated isothermal amplification // Biosens. Bioelectron. 2012. Vol. 32. P. 89–95.
  • 44. LaBarre P., Gerlach J., Wilmoth J., Beddoe A., Singleton J., Weigl B. Noninstrumented nucleic acid amplification (NINA): instrument-free molecular malaria diagnostics for low-resource settings // Conf Proc IEEE Eng Med
  • Biol Soc. 2010. Vol. 2010. P. 1097–1099.
  • 45. LaBarre P., Hawkins K.R., Gerlach J., Wilmoth J., Beddoe A., Singleton J., Boyle D., Weigl B. A simple, inexpensive device for nucleic acid amplification without electricity — toward instrument-free molecular diagnostics in
  • low-resource settings // PLos One. 2011. Vol. 6, no. 5. Article ID e19738 (8 p.).
  • 46. Liu C., Mauk M.G., Hart R., Qiu X.B., Bau H.H. A selfheating cartridge for molecular diagnostics // Lab Chip.
  • 2011. Vol. 11. P. 2686–2692.
  • 47. Song J., Pandian V., Mauk M.G., Bau H.H., Cherry S., Tisi L.C., Liu C. Smartphone-based mobile detection platform for molecular diagnostics and spatiotemporal disease
  • mapping // Anal. Chem. 2018. Vol. 90, no. 7. P. 4823–
  • 4831.
  • ИЗОТЕРМИЧЕСКАЯ ПЕТЛЕВАЯ АМПЛИФИКАЦИЯ LAMP
  • НАУЧНОЕ ПРИБОРОСТРОЕНИЕ, 2021, том 31, № 1
  • 27
  • 48. Wang J., Cai K., Zhang R. et al. Novel one-step singletube nested quantitative real-time PCR assay for highly
  • sensitive detection of SARS-CoV-2 // Anal. Chem. 2020.
  • Vol. 92, no. 13. Р. 9399–9404.
  • 49. Li Q., Guan X., Wu P., et al. Early transmission dynamics
  • in Wuhan, China, of Novel Coronavirus — Infected
  • Pneumonia. // N Engl J Med. 2020. Vol. 382. P. 1199–
  • 1207.
  • 50. Guan W.J., Ni Z.Y., Hu Y. et al. Clinical characteristics of
  • coronavirus disease 2019 in China // N Engl J Med. 2020.
  • Vol. 382. P. 1708–1720.
  • 51. Carter L.J., Garner L.V., Smoot J.W., et al. Assay techniques and test development for COVID-19 diagnosis //
  • ACS Cent. Sci. 2020. Vol. 6, no. 5. Р. 591−605.
  • 52. Udugama B., Kadhiresan P., Kozlowski H.N., et al. Diagnosing COVID-19: the disease and tools for detection //
  • ACS Nano. 2020. Vol. 14, no. 4. Р. 3822−3835.
  • 53. Feng W., Newbigging A.M., Le C. et al. molecular diagnosis of COVID-19: challenges and research needs // Anal.
  • Chem. 2020. Vol. 92, no. 15. Р. 10196–10209.
  • 54. Corman V.M., Landt O., et al. Detection of 2019 novel
  • coronavirus (2019-nCoV) by real-time RT-PCR // Euro
  • Surveill. 2020. Vol. 25, no. 3. Article ID 2000045.
  • 55. Liu R., Han H., Liu F., Lv Z., Wu K., Liu Y., Feng Y.,
  • Zhu C. Positive rate of RT-PCR detection of SARS-CoV2 infection in 4880 cases from one hospital in Wuhan,
  • China, from Jan to Feb 2020 // Clin. Chim. Acta. 2020.
  • Vol. 505. Р. 172–175.
  • 56. Yan C., Cui J., Huang L., et al. Rapid and visual detection
  • of 2019 novel coronavirus (SARS-CoV-2) by a reverse
  • transcription loop-mediated isothermal amplification assay // Clin. Microbiol. Infect. 2020. Vol. 26, no. 6.
  • Р. 773–779.
  • 57. Yu L., Wu S., Hao X., et al. Rapid detection of COVID-19
  • coronavirus using a reverse transcriptional loop-mediated
  • isothermal amplification (RT-LAMP) diagnostic platform // Clin. Chem. 2020. Vol. 66, no. 7. P. 975–977.
  • 58. Baek, Y.H., Um J., Antigua K.J. C., et al. Development of
  • a reverse transcription-loop-mediated isothermal amplification as a rapid early-detection method for novel SARSCoV-2 // Emerg. Microbes Infect. 2020. Vol. 9, no. 1.
  • Р. 998–1007.
  • 59. Lu R., Wu X., Wan Z., et al. Development of a novel reverse transcription loop-mediated isothermal amplification method for rapid detection of SARS-CoV-2 // Virologica Sinica. 2020. Vol. 35. P. 344–347.
  • 60. Как проверяют на коронавирус: обзор тестов. URL:
  • https://ntinews.ru/in_progress/likbez/kak-proveryayut-nakoronavirus-obzor-testov.html (дата обращения
  • 20.10.2020).
  • 61. НАБОР РЕАГЕНТОВ "АмплИзо-SARS-CoV-2". URL:
  • http://www.syntol.ru/catalog/nabory-reagentov-dlya-ptsrv-realnom-vremeni/amplizo-sars-cov-2.html (дата обращения 20.10.2020).
  • 62. Ganguli A., Mostafa A., Berger J., et. al. Rapid isothermal
  • amplification and portable detection system for SARSCoV-2 // PNAS. 2020. Vol. 117, no. 37. P. 22727–22735.
  • 63. ФМБА России представило тест-системы на основе
  • чипов для диагностики новой коронавирусной инфекции SARS-CoV-2. URL: https://fmba.gov.ru/presstsentr/novosti/detail/?ELEMENT_ID=38232&sphrase_id
  • =12026 (дата обращения 20.10.2020).
  • 64. "Индикатор-БИО". URL: http://old.rsmu.ru/21025.html
  • (дата обращения 20.10.2020).
  • 65. Rateni G., Dario P., Cavallo F. Smartphone-based food
  • diagnostic technologies: a review // Sensors. 2017.
  • Vol. 17, no. 6. Article ID 1453 (22 p.).
  • 66. Theuns S., Vanmechelen B., Bernaert Q., Deboutte W.,
  • Vandenhole M., Beller L., Matthijnssens J., Maes P.,
  • Nauwynck H.J. Nanopore sequencing as a revolutionary
  • diagnostic tool for porcine viral enteric disease complexes
  • identifies porcine kobuvirus as an important enteric virus // Scientific Reports. 2018. Vol. 8, no. 1. Article ID
  • 9830 (13 p.).
Еще
Статья