Изучение совместной фильтрации с помощью метода K-ближайших соседей и факторизации неотрицательной матрицы

Бесплатный доступ

Алгоритмы совместной фильтрации (CF) вызывают большой интерес в рекомендательных системах из-за их способности давать персонализированные рекомендации, используя данные о взаимодействии пользователя с элементами контента. В этой статье мы подробно исследуем два популярных метода CF — регрессию K-ближайших соседей (KNN) и неотрицательную матричную факторизацию (NMF) с целью комбинации их при совместной фильтрации. Наша цель — оценить их производительность на наборе данных MovieLens 1M и предоставить информацию об их преимуществах и недостатках. В работе дано подробное объяснение значения рекомендательных систем в современных условиях потребления контента. Изучается сложность совместной фильтрации и то, как она использует предыдущий выбор пользователей для выработки индивидуальных рекомендаций. Затем дается описание подходов на основе KNN-регрессии и NMF, рассматриваются их принципы функционирования и то, как они применяются к системам рекомендаций. Проводится разностороннее исследование регрессии KNN и NMF на наборе данных MovieLens 1M для того, чтобы обеспечить тщательную оценку. В работе описаны процессы обучения модели, показатели производительности и используемые этапы предварительной обработки данных. По результатам обработки данных измеряется и анализируется прогнозируемая точность используемых стратегий с помощью эмпирических исследований, раскрывая их эффективность при применении к различным предпочтениям пользователей и категориям контента.

Еще

Совместная фильтрация, KNN, NMF, система рекомендаций.

Короткий адрес: https://sciup.org/14129628

IDR: 14129628   |   DOI: 10.47813/2782-2818-2024-4-2-0201-0211

Статья