Эффективность использования идеологии мастер-процесса при параллельной реализации итерационных процедур решения линейных систем

Автор: Куликов Роман Георгиевич, Звягин Александр Андреевич

Журнал: Вестник Пермского национального исследовательского политехнического университета. Механика @vestnik-pnrpu-mechanics

Статья в выпуске: 1, 2013 года.

Бесплатный доступ

В работе рассматривается эффективность использования идеологии мастер-процесса при построении параллельной реализации процедуры решения систем линейных алгебраических уравнений. Исследования проведены применительно к итерационным алгоритмам методов сопряженных градиентов и Якоби. Использовался разреженный формат RR(C)U хранения матрицы коэффициентов алгебраической системы. Исследования проводились применительно к системе линейных алгебраических уравнений, сформированной в ходе решения двумерной краевой задачи линейной теории упругости методом конечных элементов. В качестве критерия количественного анализа использовалось «ускорение», равное отношению времени выполнения последовательного алгоритма ко времени выполнения параллельного алгоритма. Анализ проведен для алгебраических систем от 100 до 50000 уравнений с использованием ЭВМ на базе шестиядерного процессора AMD® Phenom II X6 1075T. Программная реализация итерационных алгоритмов решения системы линейных алгебраических уравнений была произведена на языке программирования C#. Для обеспечения взаимодействия параллельных процессов использовался стандарт MPI 2.0. Полученные данные позволяют сделать вывод, что использование мастер-процесса при параллельной реализации метода сопряженных градиентов приводит к незначительному, от 10 до 15 процентов, снижению величины коэффициента ускорения по отношению к варианту реализации, не использующему мастер-процесс. В случае использования метода Якоби эффект выражен намного слабее. Принимая во внимание структурное удобство использования идеологии мастер-процесса, можно говорить о допустимости применения данного архитектурного решения при реализации рассмотренных методов.

Еще

Параллельные вычисления, итерационные методы, системы линейных алгебраических уравнений

Короткий адрес: https://sciup.org/146211455

IDR: 146211455

Статья научная