Экспериментальные исследования полимер-силикатных нанокомпозитов с помощью атомно-силового микроскопа

Автор: Гаришин Олег Константинович, Морозов Илья Александрович, Шадрин Владимир Васильевич

Журнал: Вестник Пермского национального исследовательского политехнического университета. Механика @vestnik-pnrpu-mechanics

Статья в выпуске: 2, 2013 года.

Бесплатный доступ

Методами атомно-силовой микроскопии проведено исследование рельефа и локальных механических свойств полимер-силикатных нанокомпозитов. Основным объектом для изучения был выбран полиэтилен ПЭ 107-02К, наполненный ультратонкими слоистыми частицами модифицированной глины Cloisite 20A. Разработана оригинальная методика подготовки поверхности образца к АСМ-сканированию. В результате специального режима термической обработки в полиэтилене происходило сначала расплавление кристаллитов, а затем их восстановление (рекристаллизация). Таким образом, кристаллитные образования на поверхности становились более заметными, а нанесенные при изготовлении образца микроповреждения исчезали. В результате исследована наноструктура поверхности таких материалов. Построены АСМ-сканы рельефа, жесткости и адгезии. Установлено что наибольшая жесткость и практически нулевая адгезия характерны для частиц нанонаполнителя. Аморфная фаза была наименее жесткой, но обладала наибольшей адгезионной способностью. Жесткостные и адгезионные характеристики кристаллитов лежали где-то посредине. Кристаллиты, выходящие на поверхность образца, представляли собой образования из нескольких слабоизогнутых пачек параллельных пластин толщиной 30–60 нм с мягкой аморфной фазой в зазорах. Количество этих слоев варьировалось в пределах от 10 до 20 штук.

Еще

Полимер-силикатные нанокомпозиты, полиолефины, наноструктура, кристаллиты, атомно-силовая микроскопия, наноиндентирование

Короткий адрес: https://sciup.org/146211481

IDR: 146211481

Текст научной статьи Экспериментальные исследования полимер-силикатных нанокомпозитов с помощью атомно-силового микроскопа

Основным объектом экспериментальных исследований, представленных в данной работе, являются полимер-силикатные нанокомпозиты на основе полиэтиленовой матрицы и слоистого глинистого наполнителя (Na+-монтмориллонит). В настоящее время такие композиты достаточно широко применяются в промышленности, как в качестве конструкционных материалов, так и в других целях. Добавление в полимер даже малых порций (обычно 3-5 мас.%) силикатных нанопластинок позволяет значительно улучшить барьерные диффундирующие свойства материала, термическую стабильность, устойчивость к тепловому короблению [1-5]. Связано это скорее всего с тем, что в отличие от обычных композитов (их отдельные компоненты имеют микронные и субмикронные размеры) для наноматериалов характерна чрезвычайно высокая площадь межфазных границ, в результате чего их роль в формировании физических свойств материала становится определяющей. Это позволяет получить значительный выигрыш в улучшении тех или иных физических характеристик наноматериала при весьма незначительных концентрациях наполнителя. В нанокомпозитах объемная доля частиц составляет обычно всего несколько процентов, тогда как в обычных композитах она на порядок выше [6].

Впервые использовать сверхмелкий глинистый наполнитель было предложено еще в 1974 г. [7], но только в начале 2000 г. такие материалы стали пользоваться действительно широким спросом. Частицы наполнителя имеют форму ультратонких чешуек толщиной в несколько нанометров и характерным диаметром от десятков нанометров до 1 мкм в зависимости от месторождения минерала и условий его формирования. Эти пластинки могут образовывать кристаллиты (тактоиды) из параллельно расположенных частиц (обычно в пределах одного-двух десятков) [5].

В качестве матрицы использовали такой широко распространенный полимер, как полиэтилен. Это частично кристаллизующийся материал, и даже в чистом виде имеет сложную многоуровневую иерархическую структуру, то есть хорошо выраженную структурную неоднородность на нано-, мезо- и микроуровне [8].

Понятно, что для решения проблемы улучшения физических и механических характеристик столь сложных в структурном отношении композитов необходимы серьезные фундаментальные исследования их внутреннего строения. На сегодняшний день одним из наиболее перспективных инструментов для таких исследований является атомно-силовая микроскопия (АСМ). Ее основное преимущество по сравнению с традиционной электронной микроскопией состоит в том, что атомно-силовой микроскоп позволяет получать информацию не только о топологии внутреннего строения материала, но и о его локальных физических свойствах (которые могут значительно отличаться от макроскопических характеристик) [9-12]. Атомно-силовой микроскоп позволяет непосредственно наблюдать такие микропроцессы, как появление дислокаций, возникновение сдвиговой нестабильности, фазовые переходы и многие другие явления, недоступные для ранее известных технологий [13].

Работа современного атомно-силового микроскопа возможна в одном из трех основных режимов: бесконтактном, контактном и по-луконтактном. Бесконтактная атомно-силовая микроскопия основана на использовании вибрационной методики и применяется только для измерения топографии поверхности. В контактном режиме (силовая мода) острие зонда находится в непосредственном соприкосновении с поверхностью, при этом силы притяжения и отталкивания со стороны образца уравновешиваются силой упругости консоли (кантилевера). В полуконтактном режиме (прерывисто-контактная атомносиловая микроскопия) острие зонда АСМ совершает колебания по заданному закону и слегка стучит по поверхности образца. Последние два режима представляют наибольший интерес, так как они позволяют получать данные не только о рельефе поверхности, но и ее механических свойствах.

Основным элементом атомно-силового микроскопа является кантилевер в виде консольной стальной балки с кремниевым щупом на свободном конце. Как правило, этот щуп (зонд) имеет форму конуса со скругленной вершиной. Длина балки составляет около 100-200 мкм, высота конуса 1-3 мкм. Радиус вершины зонда (который и определяет разрешающую способность прибора) у современных кантилеверов варьируется от 10 до 50 нм.

В процессе работы зонд АСМ сканирует выбранную поверхность образца. Получаемые при этом экспериментальные данные представляют собой зависимости между координатами точек сканирования, силой реакции F , действующей на зонд, глубиной проникновения вершины щупа в исследуемый материал и и вертикальным смещением точки крепления консоли зонда z [14-15]. Эти результаты сами по себе (без дополнительных знаний о предмете исследований) малоинформативны, поэтому требуется их дальнейшая теоретическая расшифровка с привлечением различных физических и механических моделей. Особенно успешно данное направление развивается в науке о полимерах. Большинство полимеров, как правило, намного мягче, чем материал зонда АСМ, что позволяет последнему достаточно глубоко проникать внутрь образца при контакте. В результате, исследуя процесс внедрения зонда в образец, можно получать уникальные сведения о механических свойствах материала на наноструктурном уровне (нелинейная упругость, вязкие и пластические свойства).

Проведены экспериментальные исследования структуры полимеров полиолефиновой группы (термопластов) и композитов с силикатным нанонаполнителем на их основе. Цель работы состояла в изучении топологии и локальных механических свойств рассматриваемых материалов на наноуровне. Как показывает опыт, нано- и макросвойства структурно-неоднородных полимеров могут очень существенно различаться.

Основным объектом для изучения был выбран полиэтилен ПЭ 107-02К, наполненный ультратонкими слоистыми силикатными частицами модифицированной глины марки Cloisite 20A. По химическому составу это Na+-монтмориллонит, модифицированный поверхностно активными веществами (ПАВ). Степень наполнения исследуемых нанокомпозитов варьировалась от 0 до 15 мас.% ПЭ 107-02К - это широко распространенный промышленный полиэтилен низкой плотности (0,91 г/см3). Степень кристалличности составляет примерно 50 %, т.е. в нем существуют хорошо выраженные надмолекулярные образования - кристаллиты. Проведенные механические макроиспыта- ния показали, что начальный модуль упругости в зависимости от концентрации частиц изменялся от 70 МПа (чистый полимер) до 180 МПа (наполнение 15 мас.%).

При исследовании наноструктуры таких материалов возникает одна серьезная проблема. В отличие от более мягких эластомеров, которые легко поддаются обработке стандартным режущим инструментом, поверхность полиэтиленового образца значительно труднее подготовить для АСМ-сканирования. К тому же хорошо выраженная пластичность, присущая термопластам, способствует появлению остаточных деформаций на разрезаемой поверхности образца (и изменению механических свойств поверхности по сравнению с внутренними областями). Известная технология выделения кристаллитов за счет облучения образца мощным потоком ультрафиолетового излучения («выжигание» аморфной фазы) была нам недоступна ввиду отсутствия соответствующего оборудования. Поэтому были разработаны и опробованы две альтернативные методики подготовки полимерной поверхности, которые можно условно назвать «холодная» и «горячая».

В первом случае полиэтиленовый образец сначала охлаждали в жидком азоте, а затем раскалывали на отдельные части. «Холодная» технология оказалась неудачной и не получила дальнейшего развития. Поверхности сколов были очень неровными, в материале появлялись микротрещины. Все это делало образцы слабо пригодными для качественного АСМ-сканирования.

Гораздо более перспективным оказался другой подход, когда полимер подвергался перед испытаниями специальной термической обработке. «Горячая» технология подготовки образцов для исследования на АСМ состояла в следующем. Образец в виде таблетки диаметром 5 мм и высотой 2-3 мм помещался в печь, нагревался до температуры, близкой температуре плавления (120-140 °С), и выдерживался определенное время (30 мин). Далее температура понижалась до 90-95 °С, и материал выдерживался еще два часа. В результате такой термической обработки в полиэтилене происходило сначала расплавление кристаллитов, а затем их восстановление (рекристаллизация). Таким образом, происходил «отжиг» материала. Убирались возможные при изготовлении образца повреждения на его поверхности, а кристаллитные образования становились более «рельефными».

Эксперименты проводили на атомно-силовых микроскопах Nano-DST и Bruker Icon. АСМ-сканирование проводилось в полуконтактном режиме наномеханического картирования (PeakForce QNM). В этом случае зонд движется с гармонической частотой 2 Гц в нормальной к образцу плоскости, «постукивая» о поверхность. Информация о локальных физических свойствах определяется из анализа амплитуды отскока и сдвига по фазе. Одновременно с рельефом строились карты таких механических характеристик поверхности образца, как адгезия F adh и жесткость E s . F adh - это максимальная сила на обратном ходе зонда АСМ, когда происходит прерывание его контакта с поверхностью. E s =3/4(1-v s 2)( F - F adh )/( Ru 3)0,5 - измеряемый модуль по модели Дерягина-Мюллера-Торопова (в основе которой лежит решение Герца плюс учет адгезии между зондом и поверхностью образца). Здесь и -глубина внедрения зонда; F - сила на конце кантилевера; v s - коэффициент Пуассона образца.

В работе использовались два типа кантилеверов: 1) малой жесткости (спринг-константа k = 0,32 Н/м, радиус вершины R = 4 нм); 2) большой жесткости ( k = 3,4 Н/м, R = 10 нм). Эксперименты показали, что в данном конкретном случае мягкие зонды дают более качественную картину при сканировании рельефа, тогда как более жесткие кантилеверы лучше использовать при определении механических свойств поверхности образца (это связано с большим различием в жесткости наполнителя и матрицы).

Для исследований были выбраны образцы ПЭ 107-02К с наполнением 0 и 15 мас.%. Сканировали квадратные области со стороной 1,5, 5 и 15 мкм. Большие, 15 мкм сканы использовались для получения общего представления о структуре материала - кристаллитные образования и включения на них видны плохо. На малых сканах эти структуры выявляются намного лучше - особенно на 1,5 мкм. В результате была проведена оценка размеров и формы как кристаллитов, так и силикатных включений, а также оценка их механических свойств.

На рис. 1, 2, 3 показаны АСМ-сканы рельефа, жесткости и адгезии для ПЭ 107-02К с 15 мас.% содержанием нанонаполнителя. Все три картинки построены для одного и того же участка поверхности размером 1,5*1,5 мкм.

Рис. 1. АСМ-скан рельефа наполненного полиэтилена (15 мас.%). Впадины отображаются темным цветом, возвышенности - светлым. Светлое пятно в центре - силикатное включение. Полосы - кристаллитные образования с аморфной фазой между пластинами

Рис. 2. АСМ-скан жесткости ( E s ) наполненного полиэтилена (15 мас.%). Максимальные значения отображаются темным цветом, минимальные -серым, промежуточные значения - светлой окраской

Рис. 3. АСМ-скан адгезии ( F adh ) наполненного полиэтилена (15 мас.%). Впадины отображаются темным цветом, возвышенности - светлым. Промежуточные значения по возрастанию интенсивности окраски -серым цветом

Реальные рисунки, полученные в результате сканирования на АСМ, цветные и шкала значений величин также цветная, поэтому на полученных прибором рисунках легче отождествлять числовые значения высоты неровности, и значения величины жесткости и адгезии.

Установлено что наибольшей жесткостью и наименьшей адгезией обладали частицы нанонаполнителя. Их жесткость достигала 1000 МПа. На самом деле она могла быть и выше, так как эти значения находились на пределе верхнего порога чувствительности кантилевера (конструктивная особенность прибора такова, что все, что выше, он показывает как 1000 МПа). Сила прилипания к силикатным включениям соответствовала примерно 0,1-2 нН, то есть практически отсутствовала. Аморфная фаза была наименее жесткой - 15-30 МПа, но обладала наибольшей адгезионной способностью - около 15-20 нН. Жестко-стные и адгезионные характеристики кристаллитов лежали где-то посредине: примерно 300 МПа и 7 нН соответственно.

Частицы наполнителя на сканах имеют форму плоских «монеток» с характерным диаметром порядка 80-100 нм.

Кристаллиты, выходящие на поверхность образца, представляют собой образования из нескольких слабоизогнутых пачек параллельных пластин толщиной 30-60 нм. Количество этих слоев варьируется в пределах от 10 до 20 штук.

Если сравнивать топологию наполненного и ненаполненного ПЭ (судя по имеющимся картинкам), можно сделать вывод что наличие частиц наполнителя слабо влияет на процесс кристаллизации. Для ответа на этот непростой вопрос необходимо проведение более детальных и тщательных исследований.

Работа выполнена при финансовой поддержке РФФИ и Министерства промышленности инноваций и науки Пермского края (гранты 11-08-96001 р_урал_а и 13-08-00065) и Программы ОЭММПУ РАН 12-Т-1-1004.

Статья научная