Эндокринные дизрапторы в канцерогенном фоне биосферы

Автор: Белицкий Г.А., Кирсанов К.И., Лесовая Е.А., Жидкова Е.М., Хитрово И.А., Якубовская М.Г.

Журнал: Сибирский онкологический журнал @siboncoj

Рубрика: Обзоры

Статья в выпуске: 5 т.22, 2023 года.

Бесплатный доступ

Цель исследования - представить современную концепцию по влиянию эндокринных дизрапторов, вносящих существенный вклад в общий уровень загрязнения биосферы антропогенными ксенобиотиками, на процесс канцерогенеза. материал и методы. При подготовке обзора были проанализированы статьи по изучению эффектов эндокринных дизрапторов, имеющиеся в информационных базах биомедицинской литературы SciVerse Scopus, PubMed, Web of Science, РИНЦ. В обзоре процитированы 65 современных публикаций, из которых 21 работа была опубликована в течение трех последних лет, 3 статьи представляют собой официальные документы по рискам, сопряженным с использованием эндокринных дизрапторов, а 10 статей относятся к публикациям, создающим предпосылки для выделения данных соединений в отдельную функциональную группу.

Еще

Эндокринные дизрапторы, промоторы, канцерогенез, гормоны, эстрогены, андрогены, пестициды, молочная железа, эпигенетика, предстательная железа, легкие

Короткий адрес: https://sciup.org/140303537

IDR: 140303537   |   DOI: 10.21294/1814-4861-2023-22-5-145-160

Список литературы Эндокринные дизрапторы в канцерогенном фоне биосферы

  • Herbst A.L., Ulfelder H., Poskanzer D.C. Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med. 1971; 284(15): 878–81. doi: 10.1056/NEJM197104222841604.
  • Attina T.M., Hauser R., Sathyanarayana S., Hunt P.A., Bourguignon J.P., Myers J.P., DiGangi J., Zoeller R.T., Trasande L. Exposure to endocrine-disrupting chemicals in the USA: a population-based disease burden and cost analysis. Lancet Diabetes Endocrinol. 2016; 4(12): 996–1003. doi: 10.1016/S2213-8587(16)30275-3.
  • Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022; 72(1): 7–33. doi: 10.3322/caac.21708.
  • Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71(3): 209–49. doi: 10.3322/caac.21660.
  • Bellanger M., Demeneix B., Grandjean P., Zoeller R.T., Trasande L. Neurobehavioral deficits, diseases, and associated costs of exposure to endocrine-disrupting chemicals in the European Union. J Clin Endocrinol Metab. 2015; 100(4): 1256–66. doi: 10.1210/jc.2014-4323.
  • Hauser R., Skakkebaek N.E., Hass U., Toppari J., Juul A., Andersson A.M., Kortenkamp A., Heindel J.J., Trasande L. Male reproductive disorders, diseases, and costs of exposure to endocrine-disrupting chemicals in the European Union. J Clin Endocrinol Metab. 2015; 100(4): 1267–77. doi: 10.1210/jc.2014-4325.
  • Lichtenstein P., Holm N.V., Verkasalo P.K., Iliadou A., Kaprio J., Koskenvuo M., Pukkala E., Skytthe A., Hemminki K. Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000; 343(2): 78–85. doi: 10.1056/NEJM200007133430201.
  • Koual M., Tomkiewicz C., Cano-Sancho G., Antignac J.P., Bats A.S., Coumoul X. Environmental chemicals, breast cancer progression and drug resistance. Environ Health. 2020; 19(1): 117. doi: 10.1186/s12940-020-00670-2.
  • Balaguer P., Delfosse V., Grimaldi M., Bourguet W. Structural and Functional Evidences for the Interactions between Nuclear Hormone Receptors and Endocrine Disruptors at Low Doses. C. R. Biol. 2017; 340(9–10): 414–20, doi:10.1016/j.crvi.2017.08.002.
  • Gore A.C., Chappell V.A., Fenton S.E., Flaws J.A., Nadal A., Prins G.S., Toppari J., Zoeller R.T. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev. 2015; 36(6): 1–150. doi: 10.1210/er.2015-1010.
  • Arbo M.D., Franco M.T., Larentis E.R., Garcia S.C., Sebben V.C., Leal M.B., Dallegrave E., Limberger R.P. Screening for in vivo (anti)estrogenic activity of ephedrine and p-synephrine and their natural sources Ephedra sinica Stapf. (Ephedraceae) and Citrus aurantium L. (Rutaceae) in rats. Arch Toxicol. 2009; 83(1): 95–9. doi: 10.1007/s00204-008-0324-8.
  • Korn S.H., Wouters E.F., Wesseling G., Arends J.W., Thunnissen F.B. Interaction between glucocorticoids and beta2-agonists: alpha and beta glucocorticoid-receptor mRNA expression in human bronchial epithelial cells. Biochem Pharmacol. 1998; 56(12): 1561–9. doi: 10.1016/s0006-2952(98)00179-8.
  • Conolly R.B., Lutz W.K. Nonmonotonic dose-response relationships: mechanistic basis, kinetic modeling, and implications for risk assessment. Toxicol Sci. 2004; 77(1): 151–7. doi: 10.1093/toxsci/kfh007. Erratum in: Toxicol Sci. 2004; 77(2): following table of contents.
  • Graceli J.B., Sena G.C., Lopes P.F., Zamprogno G.C., da Costa M.B., Godoi A.F., Dos Santos D.M., de Marchi M.R., Dos Santos Fernandez M.A. Organotins: a review of their reproductive toxicity, biochemistry, and environmental fate. Reprod Toxicol. 2013; 36: 40–52. doi: 10.1016/j. reprotox.2012.11.008.
  • Oyola M.G., Handa R.J. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: sex differences in regulation of stress responsivity. Stress. 2017; 20(5): 476–94. doi: 10.1080/10253890.2017.1369523.
  • Iaglov V.V. Aktualnye problemy biologii diffuznoĭ éndokrinnoĭ sistemy [Current problems of the biology of the diffuse endocrine system]. Arkh Anat Gistol Embriol. 1989; 96(1): 14–29.
  • Simpson E., Rubin G., Clyne C., Robertson K., O’Donnell L., Jones M., Davis S. The role of local estrogen biosynthesis in males and females. Trends Endocrinol Metab. 2000; 11(5): 184–8. doi: 10.1016/s1043-2760(00)00254-x.
  • McNamara K.M., Sasano H. The intracrinology of breast cancer. J Steroid Biochem Mol Biol. 2015; 145: 172–8. doi: 10.1016/j.jsbmb.2014.04.004.
  • Penning T.M., Detlefsen A.J. Intracrinology-revisited and prostate cancer. J Steroid Biochem Mol Biol. 2020; 196. doi: 10.1016/j.jsbmb.2019.105499.
  • Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6): 394–424. doi: 10.3322/caac.21492. Erratum in: CA Cancer J Clin. 2020; 70(4): 313.
  • Cohn B.A., Wolff M.S., Cirillo P.M., Sholtz R.I. DDT and breast cancer in young women: new data on the significance of age at exposure. Environ Health Perspect. 2007; 115(10): 1406–14. doi: 10.1289/ehp.10260.
  • Cohn B.A., Cirillo P.M., Terry M.B. DDT and Breast Cancer: Prospective Study of Induction Time and Susceptibility Windows. J Natl Cancer Inst. 2019; 111(8): 803–10. doi: 10.1093/jnci/djy198.
  • Cheong A., Johnson S.A., Howald E.C., Ellersieck M.R., Camacho L., Lewis S.M., Vanlandingham M.M., Ying J., Ho S.M., Rosenfeld C.S. Gene expression and DNA methylation changes in the hypothalamus and hippocampus of adult rats developmentally exposed to bisphenol A or ethinyl estradiol: a CLARITY-BPA consortium study. Epigenetics. 2018; 13(7): 704–20. doi: 10.1080/15592294.2018.1497388.
  • Cao J., Mickens J.A., McCaffrey K.A., Leyrer S.M., Patisaul H.B. Neonatal Bisphenol A exposure alters sexually dimorphic gene expression in the postnatal rat hypothalamus. Neurotoxicology. 2012; 33(1): 23–36. doi: 10.1016/j.neuro.2011.11.002.
  • Eckstrum K.S., Edwards W., Banerjee A., Wang W., Flaws J.A., Katzenellenbogen J.A., Kim S.H., Raetzman L.T. Effects of Exposure to the Endocrine-Disrupting Chemical Bisphenol A During Critical Windows of Murine Pituitary Development. Endocrinology. 2018; 159(1): 119–31. doi: 10.1210/en.2017-00565.
  • Nair V.A., Valo S., Peltomäki P., Bajbouj K., Abdel-Rahman W.M. Oncogenic Potential of Bisphenol A and Common Environmental Contaminants in Human Mammary Epithelial Cells. Int J Mol Sci. 2020; 21(10): 3735. doi: 10.3390/ijms21103735.
  • Acevedo N., Davis B., Schaeberle C.M., Sonnenschein C., Soto A.M. Perinatally administered bisphenol a as a potential mammary gland carcinogen in rats. Environ Health Perspect. 2013; 121(9): 1040–6. doi: 10.1289/ehp.1306734.
  • Cockburn M., Mills P., Zhang X., Zadnick J., Goldberg D., Ritz B. Prostate cancer and ambient pesticide exposure in agriculturally intensive areas in California. Am J Epidemiol. 2011; 173(11): 1280–8. doi: 10.1093/aje/kwr003.
  • Bleak T.C., Calaf G.M. Breast and prostate glands affected by environmental substances (Review). Oncol Rep. 2021; 45(4): 20. doi: 10.3892/or.2021.7971.
  • Kandaraki E., Chatzigeorgiou A., Livadas S., Palioura E., Economou F., Koutsilieris M., Palimeri S., Panidis D., Diamanti-Kandarakis E. Endocrine disruptors and polycystic ovary syndrome (PCOS): elevated serum levels of bisphenol A in women with PCOS. J Clin Endocrinol Metab. 2011; 96(3): 480–4. doi: 10.1210/jc.2010-1658.
  • Manikkam M., Tracey R., Guerrero-Bosagna C., Skinner M.K. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One. 2013; 8(1). doi: 10.1371/journal.pone.0055387.
  • Ho S.M., Tang W.Y., Belmonte de Frausto J., Prins G.S. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res. 2006; 66(11): 5624–32. doi: 10.1158/0008-5472.CAN-06-0516.
  • Khan N.G., Correia J., Adiga D., Rai P.S., Dsouza H.S., Chakrabarty S., Kabekkodu S.P. A comprehensive review on the carcinogenic potential of bisphenol A: clues and evidence. Environ Sci Pollut Res Int. 2021; 28(16): 19643–63. doi: 10.1007/s11356-021-13071-w.
  • Prins G.S., Ye S.H., Birch L., Zhang X., Cheong A., Lin H., Calderon- Gierszal E., Groen J., Hu W.Y., Ho S.M., van Breemen R.B. Prostate Cancer Risk and DNA Methylation Signatures in Aging Rats following Developmental BPA Exposure: A Dose-Response Analysis. Environ Health Perspect. 2017; 125(7). doi: 10.1289/EHP1050.
  • Stapelfeld C., Dammann C., Maser E. Sex-specificity in lung cancer risk. Int J Cancer. 2020; 146(9): 2376–82. doi: 10.1002/ijc.32716.
  • The Coronary Drug Project. Findings leading to discontinuation of the 2.5-mg day estrogen group. The coronary Drug Project Research Group. JAMA. 1973; 226(6): 652–7.
  • Słowikowski B.K., Jankowski M., Jagodziński P.P. The smoking estrogens – a potential synergy between estradiol and benzo(a)pyrene. Biomed Pharmacother. 2021; 139. doi: 10.1016/j.biopha.2021.111658.
  • La Merrill M.A., Vandenberg L.N., Smith M.T., Goodson W., Browne P., Patisaul H.B., Guyton K.Z., Kortenkamp A., Cogliano V.J., Woodruff T.J., Rieswijk L., Sone H., Korach K.S., Gore A.C., Zeise L., Zoeller R.T. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat Rev Endocrinol. 2020; 16(1): 45–57. doi: 10.1038/s41574-019-0273-8.
  • Zama A.M., Uzumcu M. Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes. Endocrinology. 2009; 150(10): 4681–91. doi: 10.1210/en.2009-0499.
  • Fimia G.M., Sassone-Corsi P. Cyclic AMP signalling. J Cell Sci. 2001; 114(Pt 11): 1971–2. doi: 10.1242/jcs.114.11.1971.
  • Ye L., Guo J., Ge R.S. Environmental Pollutants and Hydroxysteroid Dehydrogenases. In Vitamins & Hormones. Elsevier. 2014; 94: 349–90.https://doi.org/10.1016/B978-0-12-800095-3.00013-4.
  • Amir S., Shah S.T.A., Mamoulakis C., Docea A.O., Kalantzi O.I., Zachariou A., Calina D., Carvalho F., Sofikitis N., Makrigiannakis A., Tsatsakis A. Endocrine Disruptors Acting on Estrogen and Androgen Pathways Cause Reproductive Disorders through Multiple Mechanisms: A Review. Int J Environ Res Public Health. 2021; 18(4): 1464. doi: 10.3390/ijerph18041464.
  • Xin F., Jiang L., Liu X., Geng C., Wang W., Zhong L., Yang G., Chen M. Bisphenol A induces oxidative stress-associated DNA damage in INS-1 cells. Mutat Res Genet Toxicol Environ Mutagen. 2014; 769: 29–33. doi: 10.1016/j.mrgentox.2014.04.019.
  • Tarnow P., Tralau T., Luch A. Chemical activation of estrogen and aryl hydrocarbon receptor signaling pathways and their interaction in toxicology and metabolism. Expert Opin Drug Metab Toxicol. 2019; 15(3): 219–29. doi: 10.1080/17425255.2019.1569627.
  • Drobná Z., Henriksen A.D., Wolstenholme J.T., Montiel C., Lambeth P.S., Shang S., Harris E.P., Zhou C., Flaws J.A., Adli M., Rissman E.F. Transgenerational Effects of Bisphenol A on Gene Expression and DNA Methylation of Imprinted Genes in Brain. Endocrinology. 2018; 159(1): 132–44. doi: 10.1210/en.2017-00730.
  • Lucaccioni L., Trevisani V., Marrozzini L., Bertoncelli N., Predieri B., Lugli L., Berardi A., Iughetti L. Endocrine-Disrupting Chemicals and Their Effects during Female Puberty: A Review of Current Evidence. Int J Mol Sci. 2020; 21(6): 2078. doi: 10.3390/ijms21062078.
  • Lampis A., Hahne J.C., Gasparini P., Cascione L., Hedayat S., Vlachogiannis G., Murgia C., Fontana E., Edwards J., Horgan P.G., Terracciano L., Sansom O.J., Martins C.D., Kramer-Marek G., Croce C.M., Braconi C., Fassan M., Valeri N. MIR21-induced loss of junctional adhesion molecule A promotes activation of oncogenic pathways, progression and metastasis in colorectal cancer. Cell Death Differ. 2021; 28(10): 2970–82. doi: 10.1038/s41418-021-00820-0.
  • Knoll M., Lodish H.F., Sun L. Long non-coding RNAs as regulators of the endocrine system. Nat Rev Endocrinol. 2015; 11(3): 151–60. doi: 10.1038/nrendo.2014.229.
  • Pardini B., Calin G.A. MicroRNAs and Long Non-Coding RNAs and Their Hormone-Like Activities in Cancer. Cancers (Basel). 2019; 11(3): 378. doi: 10.3390/cancers11030378.
  • Derghal A., Djelloul M., Trouslard J., Mounien L. An Emerging Role of micro-RNA in the Effect of the Endocrine Disruptors. Front Neurosci. 2016; 10: 318. doi: 10.3389/fnins.2016.00318.
  • Schveigert D., Krasauskas A., Didziapetriene J., Kalibatiene D., Cicenas S. Smoking, hormonal factors and molecular markers in female lung cancer. Neoplasma. 2016; 63(4): 504–9. doi: 10.4149/neo_2016_402.
  • Meireles S.I., Esteves G.H., Hirata R. Jr., Peri S., Devarajan K., Slifker M., Mosier S.L., Peng J., Vadhanam M.V., Hurst H.E., Neves E.J., Reis L.F., Gairola C.G., Gupta R.C., Clapper M.L. Early changes in gene expression induced by tobacco smoke: Evidence for the importance of estrogen within lung tissue. Cancer Prev Res (Phila). 2010; 3(6): 707–17. doi: 10.1158/1940-6207.CAPR-09-0162.
  • Meza R., Meernik C., Jeon J., Cote M.L. Lung cancer incidence trends by gender, race and histology in the United States, 1973–2010. PLoS One. 2015; 10(3). doi: 10.1371/journal.pone.0121323.
  • Lortet-Tieulent J., Soerjomataram I., Ferlay J., Rutherford M., Weiderpass E., Bray F. International trends in lung cancer incidence by histological subtype: adenocarcinoma stabilizing in men but still increasing in women. Lung Cancer. 2014; 84(1): 13–22. doi: 10.1016/j.lungcan.2014.01.009.
  • Smida T., Bruno T.C., Stabile L.P. Influence of Estrogen on the NSCLC Microenvironment: A Comprehensive Picture and Clinical Implications. Front Oncol. 2020; 10: 137. doi: 10.3389/fonc.2020.00137.
  • Hirao-Suzuki M. Estrogen Receptor β as a Possible Double-Edged Sword Molecule in Breast Cancer: A Mechanism of Alteration of Its Role by Exposure to Endocrine-Disrupting Chemicals. Biol Pharm Bull. 2021; 44(11): 1594–7. doi: 10.1248/bpb.b21-00468.
  • Zhang C., Schilirò T., Gea M., Bianchi S., Spinello A., Magistrato A., Gilardi G., Di Nardo G. Molecular Basis for Endocrine Disruption by Pesticides Targeting Aromatase and Estrogen Receptor. Int J Environ Res Public Health. 2020; 17(16): 5664. doi: 10.3390/ijerph17165664.
  • Küblbeck J., Vuorio T., Niskanen J., Fortino V., Braeuning A., Abass K., Rautio A., Hakkola J., Honkakoski P., Levonen A.L. The EDCMET Project: Metabolic Effects of Endocrine Disruptors. Int J Mol Sci. 2020; 21(8): 3021. doi: 10.3390/ijms21083021.
  • Delfosse V., Dendele B., Huet T., Grimaldi M., Boulahtouf A., Gerbal-Chaloin S., Beucher B., Roecklin D., Muller C., Rahmani R., Cavaillès V., Daujat-Chavanieu M., Vivat V., Pascussi J.M., Balaguer P., Bourguet W. Synergistic activation of human pregnane X receptor by binary cocktails of pharmaceutical and environmental compounds. Nat Commun. 2015; 6: 8089. doi: 10.1038/ncomms9089.
  • Kassotis C.D., Stapleton H.M. Endocrine-Mediated Mechanisms of Metabolic Disruption and New Approaches to Examine the Public Health Threat. Front Endocrinol (Lausanne). 2019; 10: 39. doi: 10.3389/fendo.2019.00039.
  • Safe S., Wormke M. Inhibitory aryl hydrocarbon receptor-estrogen receptor alpha cross-talk and mechanisms of action. Chem Res Toxicol. 2003; 16(7): 807–16. doi: 10.1021/tx034036r.
  • Nomiri S., Hoshyar R., Ambrosino C., Tyler C.R., Mansouri B. A mini review of bisphenol A (BPA) effects on cancer-related cellular signaling pathways. Environ Sci Pollut Res Int. 2019; 26(9): 8459–67. doi: 10.1007/s11356-019-04228-9.
  • Leng Y., Ren L., Niu S., Zhang T., Zhang J. In vitro and in silico investigations of endocrine disruption induced by metabolites of plasticizers through glucocorticoid receptor. Food Chem Toxicol. 2021; 155. doi: 10.1016/j.fct.2021.112413.
  • Atlas E., Pope L., Wade M.G., Kawata A., Boudreau A., Boucher J.G. Bisphenol A increases aP2 expression in 3T3L1 by enhancing the transcriptional activity of nuclear receptors at the promoter. Adipocyte. 2014; 3(3): 170–9. doi: 10.4161/adip.28436.
  • de la Rosa R., Vazquez S., Tachachartvanich P., Daniels S.I., Sillé F., Smith M.T. Cell-Based Bioassay to Screen Environmental Chemicals and Human Serum for Total Glucocorticogenic Activity. EnvironToxicol Chem. 2021; 40(1): 177–86. doi: 10.1002/etc.4903.
  • Meakin C.J., Szilagyi J.T., Avula V., Fry R.C. Inorganic arsenic and its methylated metabolites as endocrine disruptors in the placenta: Mechanisms underpinning glucocorticoid receptor (GR) pathway perturbations. Toxicol Appl Pharmacol. 2020. doi: 10.1016/j.taap.2020.115305.
  • Leng Y., Sun Y., Huang W., Lv C., Cui J., Li T., Wang Y. Identification of dicyclohexyl phthalate as a glucocorticoid receptor antagonist by molecular docking and multiple in vitro methods. Mol Biol Rep. 2021; 48(4): 3145–54. doi: 10.1007/s11033-021-06303-2.
  • European Parliament. Directorate General for Internal Policies of the Union. Endocrine Disruptors: From Scientific Evidence to Human Health Protection Policy. Publications Office: LU, 2019.
  • Kassotis C.D., Vandenberg L.N., Demeneix B.A., Porta M., Slama R., Trasande L. Endocrine-disrupting chemicals: economic, regulatory, and policy implications. Lancet Diabetes Endocrinol. 2020; 8(8): 719–30. doi: 10.1016/S2213-8587(20)30128-5.
  • Hormonally Active Agents in the Environment. Committee on Hormonally Active Agents in the Environment. National Research Council, 1999.
  • European Chemical Agency (ECHA) and European Food Safety Authority (EFSA) with the technical support of the Joint Research Centre (JRC); Andersson N., Arena M., Auteri D., Barmaz S., Grignard E., Kienzler A., Lepper P., Lostia A.M., Munn S., Parra Morte J.M., Pellizzato F., Tarazona J., Terron A., Van der Linden S. Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. EFSA J. 2018; 16(6). doi: 10.2903/j.efsa.2018.5311.
  • Максимова В.П., Бугаева П.Е., Жидкова Е.М., Усалка О.Г.,Лесовая Е.А., Белицкий Г.А., Якубовская М.Г., Кирсанов К.И. Современные подходы к выявлению и изучению эпигенетически активных ксенобиотиков. Успехи молекулярной онкологии. 2019; 6(3): 8–27. [Maksimova V.P., Bugaeva P.E., Zhidkova E.M., Usalka O.G., Lesovaya E.A., Belitsky G.A., Yakubovskaya M.G., Kirsanov K.I. Modern approaches for the screening of epigenetically active xenobiotics. Advances in Molecular Oncology. 2019; 6(3): 8–27. (in Russian)]. doi: 10.17650/2313-805X-2019-6-3-8-27.
Еще
Статья научная