Energy product in a crack-like defect model under loading of mode II type
Автор: Glagolev V.V., Glagolev L.V., Markin A.A.
Статья в выпуске: 4, 2019 года.
Бесплатный доступ
The loading of a crack-like defect in mode II is considered. In contrast to the classical representation of a crack in the form of a mathematical cut, the proposed model defines a crack in the form of a physical cut with a characteristic linear size. The mental continuation of a physical cut in a solid forms an interaction layer. It is significant that the stress-strain state of the layer does not introduce a singularity to the crack model. The product of the increment of the specific free energy in the face square element of the layer by the linear size determines its energy product. The object of the study is a double-cantilever sample, and the subject of study is the energy product in the face element of the interaction layer. The external load of the cantilevers leads to their horizontal antisymmetric displacements, which form uniform shear deformations in the interaction layer. From the equilibrium conditions of the cantilevers in the variation form, taking into account the hypothesis of axial deformation homogeneity and their reduction, a system of differential equations is obtained, which relates the stress state in the layer and the cantilevers. The solution of the characteristic equation of the system is investigated for various ratios of layer thickness and cantilevers. It is shown that when the relationship is less than a certain value, depending on the Poisson's ratio, real roots take place. In the framework of the real roots of the characteristic equation, an analytical solution of the problem is obtained. Subject to the neglect of compression cantilevers found a simplified solution. The deformations in the layer are determined taking into account the compression of the consoles and without it. The analysis of the dependence of the energy product on the relationship of the thickness of the layer and cantilevers. It is shown that with a thickness ratio of 10-6 or less, the energy product practically does not change its value. Accounting for the compression of cantilevers gives a difference in the values of the energy product of the order of 20 % in relation to the simplified solution of the problem.
Трещина моды ii, energy product, linear size, crack mode ii
Короткий адрес: https://sciup.org/146281968
IDR: 146281968 | DOI: 10.15593/perm.mech/2019.4.05