Эпигенетика, генетика и биохимия суицидов

Автор: Козлов В.А., Голенков А.В., Орлов Ф.В.

Журнал: Суицидология @suicidology

Статья в выпуске: 3 (52) т.14, 2023 года.

Бесплатный доступ

Развитие методов молекулярной биологии позволило выявить новые, ранее неизвестные механизмы формирования суицидального фенотипа и суицидального поведения. Специалистам в области суицидологии это позволило расценить суицидальный фенотип как самостоятельную полигенную и мультифакторную патологию, которая может сопутствовать психическим заболеваниям как коморбидное состояние. Цель публикации - систематизация известных данных литературы о стойких биохимических изменениях, ассоциируемых с суицидальным фенотипом. Рассмотрены эпигенетические, генетические и биохимические маркеры, ассоциированные с суицидальным поведением и суицидами лиц без предшествующих психических заболеваний, а также молекулярно-биологический анализ случаев суицида у больных с большим депрессивным расстройством. Анализ современной литературы - публикации прямых исследований биологического материала, полученных от лиц с суицидальным поведением и суицидентов, а также метаанализов - даёт основания считать базовой причиной суицидального фенотипа нейровоспаление и/или проникновение в ликворную жидкость через генуинно скомпрометированный гематоэнцефалический барьер воспалительных цитокинов, образующихся у лиц с длительно протекающими истощающими хроническими воспалительными заболеваниями (латентная инфекция Toxoplasma gondii, ревматоидные заболевания, атопический дерматит, бронхиальная астма). Нейровоспаление, формирующее суицидальный фенотип, реализуется в результате однонуклеотидных полиморфизмов генов, ассоцииро ванных с генами гомеобокса и иммунного ответа, таких как интерлейкины-2, -4, -6, фактор некроза опухоли. В то время как интерлейкин-8, возможно оказывает защитный эффект. Кроме того, суицидальный фенотип с большой долей вероятности связан с генетически обусловленным нарушением обмена триптофана, вызванным активацией кинуренинового пути с сопутствующим истощением пула серотонина и индуцированием нейровоспаления по кинурениновому типу. Хроническое нейровоспаление меняет психотип и поведение в сторону формирования суицидального фенотипа. В результате индивидуум формирует вокруг себя социальную среду, способствующую отягчению нейровоспаления, и суициду как финалу заболевания. Сделан вывод, что суицидальный фенотип формируется нейровоспалением.

Еще

Суицид, однонуклеотидные полиморфизмы, эпигенетика, генетика биохимия, нейровоспаление, кинуренин, toxoplasma gondii, кетамин, соли лития, холекальциферол

Короткий адрес: https://sciup.org/140301926

IDR: 140301926   |   DOI: 10.32878/suiciderus.23-14-03(52)-27-50

Список литературы Эпигенетика, генетика и биохимия суицидов

  • Разумовский О.С. Бихевиоральные системы / Отв. ред. В.Н. Карпович; Рос. АН, Сиб. отд-ние, Ин-т философии и права. Новосибирск; Наука; Сиб. изд. фирма, 1993. 236 с. [Razumovsky O.S. Behavioral Systems / Ed. V. N. Karpovich; Russian Academy of Sciences, Siberian Branch, Institute of Philosophy and Law. Novosibirsk; Nauka; Siberian Publishing house firm, 1993. 236 p.] (In Russ)
  • Докинз Р. Расширенный фенотип; длинная рука гена. Москва; Астрель, 2011; 512 с. [Dawkins R. Extended phenotype; the long arm of the gene. Moscow; Astrel, 2011; 512 p.] (In Russ)
  • Романов В.В. Юридическая психология. Москва; Юристъ, 1998. 488 с. [Romanov V.V. Legal psychology. Moscow; Jurist, 1998. 488 p.] (In Russ)
  • Шестакова Е.Г., Дорфман Л.Я. Личностные предпосылки агрессии. Мир психологии. 2011; 1: 211-225. [Shestakova E.G., Dorfman L.Ya. Personal prerequisites of aggression. The world of psychology. 2011; 1: 211-225.] (In Russ)
  • Voracek M., Loibl L.M. Genetics of suicide; a systematic review of twin studies. Wien Klin Wochenschr. 2007; 119 (15-16): 463-475. DOI: 10.1007/s00508-007-0823-2
  • Fu Q., Heath A.C., Bucholz K.K., Nelson E.C., Glowinski A.L., Goldberg J., Lyons M.J., Tsuang M.T., Jacob T., True M.R., Eisen S.A. A twin study of genetic and environmental influences on suicidality in men. Psychol Med. 2002; 32 (1); 11-24. DOI: 10.1017/s0033291701004846
  • Turecki G., Brent D.A., Gunnell D., O'Connor R.C., Oquendo M.A., Pirkis J., Stanley B.H. Suicide and suicide risk. Nat Rev Dis Primers. 2019; 5 (1); 74. DOI: 10.1038/s41572-019-0121-0
  • Mullins N., Bigdeli T.B., Børglum A.D., Coleman J.R.I., Demontis D., Mehta D., et al. Major depressive disorder working group of the psychiatric genomics consortium; bipolar disorder working group of the psychiatric genomics consortium; schizophrenia working group of the psychiatric genomics consortium; Fanous A.H., Kendler K.S., McQuillin A., Lewis C.M. GWAS of suicide attempt in psychiatric disorders and association with major depression polygenic risk scores. Am J Psychiatry. 2019; 176 (8): 651-660. DOI: 10.1176/appi.ajp.2019.18080957
  • Dwivedi Y., Rizavi H.S., Zhang H., Mondal A.C., Roberts R.C., Conley R.R., Pandey G.N. Neurotrophin receptor activation and expression in human postmortem brain; effect of suicide. Biol Psychiatry. 2009; 65 (4): 319-328. DOI: 10.1016/j.biopsych.2008.08.035
  • Asberg M., Träskman L., Thorén P. 5-HIAA in the cerebrospinal fluid. A biochemical suicide predictor? Arch Gen Psychiatry. 1976; 33 (10): 1193-1197. DOI: 10.1001/archpsyc.1976.01770100055005
  • Roggenbach J., Müller-Oerlinghausen B., Franke L. Suicidality., impulsivity and aggression – is there a link to 5HIAA concentration in the cerebrospinal fluid? Psychiatry Res. 2002; 113 (1-2): 193-206. DOI: 10.1016/s0165-1781 (02)00230-5
  • Козлов В.А., Голенков А.В., Сапожников С.П. Роль генома в суицидальном поведении (обзор литературы). Суицидология. 2021; 12 (1): 3-22. [Kozlov V.A., Golenkov A.V., Sapozhnikov S.P. The role of the genome in suicidal behavior (literature review). Suicidology / Suicidologiya. 2021; 12 (1): 3-22.] (In Russ / Engl) DOI: 10.32878/suiciderus.21-12-01 (42)-3-22
  • Козлов В.А., Сапожников С.П., Голенков А.В. Suicidal behavior; the genetic aspect of the gender paradox. Суицидология., 2021; 12 (2): 31-50. [Kozlov V.A.., Sapozhnikov S.P.., Golenkov A.V. Suicidology / Suicidologiya. 2021; 12 (2): 31-50.] (In Russ / Engl) DOI: 10.32878/suiciderus.21-12-02 (43)-31-50
  • Ruderfer D.M., Walsh C.G., Aguirre M.W., Tanigawa Y., Ribeiro J.D., Franklin J.C., Rivas M.A. Significant shared heritability underlies suicide attempt and clinically predicted probability of attempting suicide. Mol Psychiatry. 2020; 25 (10): 2422-2430. DOI: 10.1038/s41380-018-0326-8
  • Erlangsen A., Appadurai V., Wang Y., Turecki G., Mors O., Werge T., Mortensen P.B., Starnawska A., Børglum A.D., Schork A., Nudel R., Bækvad-Hansen M., Bybjerg- Grauholm J., Hougaard D.M., Thompson W.K., Nordentoft M., Agerbo E. Genetics of suicide attempts in individuals with and without mental disorders; a populationbased genome-wide association study. Mol Psychiatry. 2020; 25 (10): 2410-2421. DOI: 10.1038/s41380-018-0218-y
  • Derrien T., Johnson R., Bussotti G., Tanzer A., Djebali S., Tilgner H., Guernec G., Martin D., Merkel A., Knowles D.G., Lagarde J., Veeravalli L., Ruan X., Ruan Y., Lassmann T., Carninci P., Brown J.B., Lipovich L., Gonzalez J.M., Thomas M., Davis C.A., Shiekhattar R., Gingeras T.R., Hubbard T.J., Notredame C., Harrow J., Guigó R. The GENCODE v7 catalog of human long noncoding RNAs; analysis of their gene structure., evolution., and expression. Genome Res. 2012; 22 (9): 1775-1789. DOI: 10.1101/gr.132159.111
  • Lipovich L., Tarca A.L., Cai J., Jia H., Chugani H.T., Sterner K.N., Grossman L.I., Uddin M., Hof P.R., Sherwood C.C., Kuzawa C.W., Goodman M., Wildman D.E. Developmental changes in the transcriptome of human cerebral cortex tissue; long noncoding RNA transcripts. Cereb Cortex. 2014; 24 (6): 1451-1459. DOI: 10.1093/cercor/bhs414
  • Modarresi F., Faghihi M.A., Lopez-Toledano M.A., Fatemi R.P., Magistri M., Brothers S.P., van der Brug M.P., Wahlestedt C. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat Biotechnol. 2012; 30 (5): 453-459. DOI: 10.1038/nbt.2158
  • Punzi G.., Ursini G., Shin J., Kleinman J.E., Hyde T.M., Weinberger D.R. Increased expression of MARCKS in post-mortem brain of violent suicide completers is related to transcription of a long., noncoding., antisense RNA. Mol. Psychiatry. 2014; 19; 1057–1059. DOI: 10.1038/mp.2014.41
  • Zhou Y., Lutz P.E., Wang Y.C., Ragoussis J., Turecki G. Global long non-coding RNA expression in the rostral anterior cingulate cortex of depressed suicides. Transl. Psychiatry. 2018; 8 (1): 224. DOI: 10.1016/j.engstruct.2018.02.049
  • Liang P., Sun Y., Li Y., Liang Y. Association between single nucleotide polymorphisms within lncRNA NONHSAT102891 and depression susceptibility in a Chinese population. Neuropsychiatr Dis Treat. 2023; 19: 293-302. DOI: 10.2147/NDT.S393498
  • Punzi G., Ursini G., Viscanti G., Radulescu E., Shin J.H., Quarto T., Catanesi R., Blasi G., Jaffe A.E., Deep- Soboslay A., Hyde T.M., Kleinman J.E., Bertolino A., Weinberger D.R. Association of a noncoding rna postmortem with suicide by violent means and in vivo with aggressive phenotypes. Biol Psychiatry. 2019; 85 (5): 417-424. DOI: 10.1016/j.biopsych.2018.11.002
  • Gottesman I.I., Gould T.D. The endophenotype concept in psychiatry; etymology and strategic intentions. Am J Psychiatry. 2003; 160 (4): 636-645. DOI: 10.1176/appi.ajp.160.4.636
  • Min J.L., Hemani G., Hannon E., Dekkers K.F., Castillo- Fernandez J., Luijk R., et al. Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nat Genet. 2021; 53 (9): 1311-1321. DOI: 10.1038/s41588-021-00923-x
  • Mullins N., Kang J., Campos A.I., Coleman J.R.I., EdwardsA.C., Galfalvy H., , et al. Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium; Bipolar Disorder Working Group of the Psychiatric Genomics Consortium; Eating Disorders Working Group of the Psychiatric Genomics Consortium; German Borderline Genomics Consortium; MVP Suicide Exemplar Workgroup; V.A. Million Veteran Program; Agerbo E., Børglum A.D., Breen G., Erlangsen A., Esko T., Gelernter J., Hougaard D.M., et al. Dissecting the Shared Genetic Architecture of Suicide Attempt., Psychiatric Disorders., and Known Risk Factors. Biol Psychiatry. 2022; 91 (3): 313-327. DOI: 10.1016/j.biopsych.2021.05.029
  • Policicchio S., Washer S., Viana J., Iatrou A., Burrage J., Hannon E., Turecki G., Kaminsky Z., Mill J., Dempster E.L., Murphy T.M. Genome-wide DNA methylation metaanalysis in the brains of suicide completers. Transl Psychiatry. 2020; 10 (1): 69. DOI: 10.1038/s41398-020-0752-7
  • Wang Q., Roy B., Turecki G., Shelton R.C., Dwivedi Y. Role of complex epigenetic switching in Tumor Necrosis Factor-α upregulation in the prefrontal cortex of suicide subjects. Am J Psychiatry. 2018; 175 (3): 262-274. DOI: 10.1176/appi.ajp.2017.16070759
  • Postolache T.T., Wadhawan A., Rujescu D., Hoisington A.J., Dagdag A., Baca-Garcia E., Lowry C.A., Okusaga O.O., Brenner L.A. Toxoplasma gondii., suicidal behavior., and intermediate phenotypes for suicidal behavior. Front Psychiatry. 2021; 12: 665-682. DOI: 10.3389/fpsyt.2021.665682
  • Yin K., Xu C., Zhao G., Xie H. Epigenetic Manipulation of Psychiatric Behavioral Disorders Induced by Toxoplasma gondii. Front Cell Infect Microbiol. 2022; 12: 803-502. DOI: 10.3389/fcimb.2022.803502
  • Fond G., Capdevielle D., Macgregor A., Attal J., Larue A., Brittner M., Ducasse D., Boulenger J.P. Toxoplasma gondii; un rôle potentiel dans la genèse de troubles psychiatriques. Une revue systématique de la littérature [Toxoplasma gondii; a potential role in the genesis of psychiatric disorders]. Encephale. 2013; 39 (1): 38-43. (French) DOI: 10.1016/j.encep.2012.06.014
  • Hakimi M.A., Olias P., Sibley L.D. Toxoplasma Effectors Targeting Host Signaling and Transcription. Clin Microbiol Rev. 2017; 30 (3): 615-645. DOI: 10.1128/CMR.00005-17
  • Pappas G., Roussos N., Falagas M.E. Toxoplasmosis snapshots; global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. Int J Parasitol. 2009; 39 (12): 1385-1394. DOI: 10.1016/j.ijpara.2009.04.003
  • Cheng Y.Z., Xu L.S., Chen B.J., Li L.S., Zhang R.Y., Lin C.X., Lin J.X., Li Y.S., Li Y.R., Fang Y.Y., Lin K.Q., Zheng G.B. [Survey on the current status of important human parasitic infections in Fujian province]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 2005; 23 (5): 283-287. (Chinese)
  • Sutterland A.L., Kuin A., Kuiper B., van Gool T., Leboyer M., Fond G., de Haan L. Driving us; the association of Toxoplasma gondii with suicide attempts and traffic accidents - a systematic review and meta-analysis. Psychol Med. 2019; 49 (10): 1608-1623. DOI: 10.1017/S0033291719000813
  • Amouei A., Moosazadeh M., Nayeri Chegeni T., Sarvi S., Mizani A., Pourasghar M., Hosseini Teshnizi S., Hosseininejad Z., Dodangeh S., Pagheh A., Pourmand A.H., Daryani A. Evolutionary puzzle of Toxoplasma gondii with suicidal ideation and suicide attempts; An updated systematic review and meta-analysis. Transbound Emerg Dis. 2020; 21. DOI: 10.1111/tbed.13550
  • Postolache T.T., Wadhawan A., Rujescu D., Hoisington A.J., Dagdag A., Baca-Garcia E., Lowry C.A., Okusaga O.O., Brenner L.A. Toxoplasma gondii., suicidal behavior., and intermediate phenotypes for suicidal behavior. Front Psychiatry. 2021; 12; 665-682. DOI: 10.3389/fpsyt.2021.665682
  • Pierre-Louis E., Etheridge M.G., de Paula Baptista R., Khan A., Chasen N.M., Etheridge R.D. Disruption of Toxoplasma gondii-Induced Host Cell DNA Replication Is Dependent on Contact Inhibition and Host Cell Type. mSphere. 2022; 7 (3): e0016022. DOI: 10.1128/msphere.00160-22
  • Braun L., Brenier-Pinchart M.P., Hammoudi P.M., Cannella D., Kieffer-Jaquinod S., Vollaire J., Josserand V., Touquet B., Couté Y., Tardieux I., Bougdour A., Hakimi M.A. The Toxoplasma effector TEEGR promotes parasite persistence by modulating NF-κB signalling via EZH2. Nat Microbiol. 2019; 4 (7): 1208-1220. DOI: 10.1038/s41564-019-0431-8
  • Barbosa J.L., Béla S.R., Ricci M.F., Noviello M.L.M., Cartelle C.T., Pinheiro B.V., Vitor R.W.A., Arantes R.M.E. Spontaneous T. gondii neuronal encystment induces structural neuritic network impairment associated with changes of tyrosine hydroxilase expression. Neurosci Lett. 2020; 718; 134-721. DOI: 10.1016/j.neulet.2019.134721
  • Mahmoud M.E., Ihara F., Fereig R.M., Nishimura M., Nishikawa Y. Induction of depression-related behaviors by reactivation of chronic Toxoplasma gondii infection in mice. Behav Brain Res. 2016; 298 (Pt B): 125-133. DOI: 10.1016/j.bbr.2015.11.005
  • McFarland R., Wang Z.T., Jouroukhin Y., Li Y., Mychko O., Coppens I., Xiao J., Jones-Brando L., Yolken R.H., Sibley L.D., Pletnikov M.V. AAH2 gene is not required for dopamine-dependent neurochemical and behavioral abnormalities produced by Toxoplasma infection in mouse. Behav Brain Res. 2018; 347: 193-200. DOI: 10.1016/j.bbr.2018.03.023
  • Matowicka-Karna J., Dymicka-Piekarska V., Kemona H. Does Toxoplasma gondii infection affect the levels of IgE and cytokines (IL-5., IL-6., IL-10., IL-12., and TNFalpha)? Clin Dev Immunol. 2009; 2009: 374-696. DOI: 10.1155/2009/374696
  • Janelidze S., Mattei D., Westrin Å., Träskman-Bendz L., Brundin L. Cytokine levels in the blood may distinguish suicide attempters from depressed patients. Brain Behav Immun. 2011; 25 (2): 335-339. DOI: 10.1016/j.bbi.2010.10.010
  • Ortiz-Guerrero G., Gonzalez-Reyes R.E., de-la-Torre A., Medina-Rincón G., Nava-Mesa M.O. Pathophysiological Mechanisms of Cognitive Impairment and Neurodegeneration by Toxoplasma gondii. Infection. Brain Sci. 2020; 10 (6): 369. DOI: 10.3390/brainsci10060369
  • Galfalvy H., Zalsman G., Huang Y.Y., Murphy L., Rosoklija G., Dwork A.J., Haghighi F., Arango V., Mann J.J. A pilot genome wide association and gene expression array study of suicide with and without major depression. World J Biol Psychiatry. 2013; 14 (8): 574-582. DOI: 10.3109/15622975.2011.597875
  • Piras I.S., Huentelman M.J., Pinna F., Paribello P., Solmi M., Murru A., Carpiniello B., Manchia M., Zai C.C. A review and meta-analysis of gene expression profiles in suicide. Eur Neuropsychopharmacol. 2022; 56: 39-49. DOI: 10.1016/j.euroneuro.2021.12.003
  • Omrani M.D., Bushehri B., Bagheri M., Salari-Lak S., Alipour A., Anoshae M.R., Massomi R. Role of IL-10 - 1082., IFN-gamma +874., and TNF-alpha -308 genes polymorphisms in suicidal behavior. Arch Suicide Res. 2009; 13 (4): 330-339. DOI: 10.1080/13811110903266418
  • Chai Z., Gong J., Zheng P., Zheng J. Inhibition of miR-19a-3p decreases cerebral ischemia/reperfusion injury by targeting IGFBP3 in vivo and in vitro. Biol Res. 2020; 53 (1): 17. DOI: 10.1186/s40659-020-00280-9
  • Li Y., Yang W., Li J., Zhang Y., Zhang L., Chen S., He L., Zhang Y. Relationship between serum insulin-like growth factor 1 levels and ischaemic stroke; a systematic review and meta-analysis. BMJ Open. 2022; 12 (6): e045776. DOI: 10.1136/bmjopen-2020-045776
  • O'Connor DB., Ferguson E., Green J.A., O'Carroll R.E., O'Connor R.C. Cortisol levels and suicidal behavior; A meta-analysis. Psychoneuroendocrinology. 2016; 63: 370-379. DOI: 10.1016/j.psyneuen.2015.10.011
  • Thomas N., Armstrong C.W., Hudaib A.R., Kulkarni J., Gurvich C. A network meta-analysis of stress mediators in suicide behaviour. Front Neuroendocrinol. 2021; 63: 100-946. DOI: 10.1016/j.yfrne.2021.100946
  • Chang C.C., Tzeng N.S., Kao Y.C., Yeh C.B., Chang H.A. The relationships of current suicidal ideation with inflammatory markers and heart rate variability in unmedicated patients with major depressive disorder. Psychiatry Res. 2017; 258: 449-456. DOI: 10.1016/j.psychres.2017.08.076
  • Kappelmann N., Arloth J., Georgakis M.K., Czamara D.,Rost N., Ligthart S., Khandaker G.M., Binder E.B. Dissecting the association between inflammation., metabolic dysregulation., and specific depressive symptoms; a genetic correlation and 2-sample mendelian randomization study. JAMA Psychiatry. 2021; 78 (2): 161-170. DOI: 10.1001/jamapsychiatry.2020.3436
  • Козлов В.А., Сапожников С.П., Карышев П.Б., Воронов Л.Н. Локальный амилоидоз шишковидной железы. Патологическая физиология и экспериментальная терапия. 2022; 66 (1): 104-111. [Kozlov V.A., Sapozhnikov S.P., Karyshev P.B., Voronov L.N. Local amyloidosis of the pineal gland. Pathological physiology and experimental therapy. 2022; 66 (1): 104-111.] (In Russ) DOI: 10.25557/0031-2991.2022.01.104-111
  • McIntyre R.S., Carvalho I.P., Lui L.M.W., Majeed A., Masand P.S., Gill H., Rodrigues N.B., Lipsitz O., Coles A.C., Lee Y., Tamura J.K., Iacobucci M., Phan L., Nasri F., Singhal N., Wong E.R., Subramaniapillai M., Mansur R., Ho R., Lam R.W., Rosenblat J.D. The effect of intravenous., intranasal., and oral ketamine in mood disorders; A meta-analysis. J Affect Disord. 2020; 276; 576-584. DOI: 10.1016/j.jad.2020.06.050
  • Hochschild A., Grunebaum M.F., Mann J.J. The rapid anti-suicidal ideation effect of ketamine; A systematic review. Prev Med. 2021; 152 (1): 106-524. DOI: 10.1016/j.ypmed.2021.106524.
  • Xiong J., Lipsitz O., Chen-Li D., Rosenblat J.D., Rodrigues N.B., Carvalho I., Lui L.M.W., Gill H., Narsi F., Mansur R.B., Lee Y., McIntyre R.S. The acute antisuicidal effects of single-dose intravenous ketamine and intranasal esketamine in individuals with major depression and bipolar disorders; A systematic review and meta-analysis. J Psychiatr Res. 2021; 134: 57-68. DOI: 10.1016/j.jpsychires.2020.12.038
  • Dean R.L., Marquardt T., Hurducas C., Spyridi S., Barnes A., Smith R., Cowen P.J., McShane R., Hawton K., Malhi G.S., Geddes J., Cipriani A. Ketamine and other glutamate receptor modulators for depression in adults with bipolar disorder. Cochrane Database Syst Rev. 2021; 10 (10): CD011611. DOI: 10.1002/14651858.CD011611.pub3
  • Zhou W., Wang N., Yang C., Li XM., Zhou ZQ., Yang JJ. Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex. Eur Psychiatry. 2014; 29 (7): 419-423. DOI: 10.1016/j.eurpsy.2013.10.005
  • Rőszer T. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediators Inflamm. 2015; 2015: 816460. DOI: 10.1155/2015/816460
  • Nowak W., Grendas L.N., Sanmarco L.M., Estecho I.G., Arena Á.R., Eberhardt N., Rodante D.E., Aoki M.P., Daray F.M., Carrera Silva E.A., Errasti A.E. Proinflammatory monocyte profile in patients with major depressive disorder and suicide behaviour and how ketamine induces anti-inflammatory M2 macrophages by NMDAR and mTOR. EBioMedicine. 2019; 50: 290-305. DOI: 10.1016/j.ebiom.2019.10.063
  • Chang H.C., Lin K.H., Tai Y.T., Chen J.T., Chen R.M. Lipoteichoic acid-induced TNF-α and IL-6 gene expressions and oxidative stress production in macrophages are suppressed by ketamine through downregulating Toll-like receptor 2-mediated activation of ERK1/2 and NFκB. Shock. 2010; 33 (5): 485-492. DOI: 10.1097/SHK.0b013e3181c3cea5
  • Chang Y., Lee J.J., Hsieh C.Y., Hsiao G., Chou D.S., Sheu J.R. Inhibitory effects of ketamine on lipopolysaccharideinduced microglial activation. Mediat. Inflamm. 2009; 705379. DOI: 10.1155/2009/705379. 2009
  • Yuhas Y., Ashkenazi S., Berent E., Weizman A. Immunomodulatory activity of ketamine in human astroglial A172 cells; possible relevance to its rapid antidepressant activity. J. Neuroimmunol. 2015; 282: 33–38. DOI: 10.1016/j.jneuroim.2015.03.012
  • Beurel E., Jope R.S. Inflammation and lithium; clues to mechanisms contributing to suicide-linked traits. Transl Psychiatry. 2014; 4 (12): e488. DOI: 10.1038/tp.2014.129
  • Isung J., Aeinehband S., Mobarrez F., Mårtensson B., Nordström P., Asberg M., Piehl F., Jokinen J. Low vascular endothelial growth factor and interleukin-8 in cerebrospinal fluid of suicide attempters. Transl Psychiatry. 2012; 2 (11): e196. DOI: 10.1038/tp.2012.123
  • Black C., Miller B.J. Meta-analysis of cytokines and chemokines in suicidality; distinguishing suicidal versus nonsuicidal patients. Biol Psychiatry. 2015; 78 (1): 28-37. DOI: 10.1016/j.biopsych.2014.10.014
  • Maneglier B., Rogez-Kreuz C., Spreux-Varoquaux O., Malleret B., Thérond P., Samah B., Drouet I., Dormont D., Advenier C., Clayette P. Comparative effects of two type I interferons., human IFN-alpha and ovine IFN-tau on indoleamine-2.,3-dioxygenase in primary cultures of human macrophages. Fundam Clin Pharmacol. 2007; 21 (1): 29-34. DOI: 10.1111/j.1472-8206.2006.00460.x
  • Bradley K.A., Case J.A., Khan O., Ricart T., Hanna A., Alonso C.M., Gabbay V. The role of the kynurenine pathway in suicidality in adolescent major depressive disorder. Psychiatry Res. 2015; 227 (2-3): 206-212. DOI: 10.1016/j.psychres.2015.03.031
  • Williams E., Stewart-Knox B., Helander A., McConville C., Bradbury I., Rowland I. Associations between wholeblood serotonin and subjective mood in healthy male volunteers. Biol Psychol. 2006; 71 (2): 171-174. DOI: 10.1016/j.biopsycho.2005.03.002
  • Hunt C., Macedo E.C.T., Suchting R., de Dios C., Leal V.A.C., Soares J.C., Dantzer R., Teixeira A.L., Selvaraj S. Effect of immune activation on the kynurenine pathway and depression symptoms—A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2020; 118: 514–523. DOI: 10.1016/j.neubiorev.2020.08.010
  • Tanaka M., Spekker E., Szabo A., Polyák H., Vécsei L. Modelling the neurodevelopmental pathogenesis in neuropsychiatric disorders. Bioactive kynurenines and their analogues as neuroprotective agents—In celebration of 80th birthday of professor Peter Riederer. J. Neural Transm. 2022; 129: 627–642. DOI: 10.1007/s00702-022-02513-5
  • Kim H., Chen L., Lim G., Sung B., Wang S., McCabe M.F., Rusanescu G., Yang L., Tian Y., Mao J. Brain indoleamine 2.,3-dioxygenase contributes to the comorbidity of pain and depression. J Clin Invest. 2012; 122 (8): 2940-1954. DOI: 10.1172/JCI61884
  • Schwieler L., Larsson M.K., Skogh E., Kegel M.E., Orhan F., Abdelmoaty S., Finn A., Bhat M., Samuelsson M., Lundberg K., Dahl M.L., Sellgren C., Schuppe-Koistinen I., Svensson C., Erhardt S., Engberg G. Increased levels of IL-6 in the cerebrospinal fluid of patients with chronic schizophrenia – significance for activation of the kynurenine pathway. J Psychiatry Neurosci. 2015; 40 (2): 126-133. DOI: 10.1503/jpn.140126
  • Urata Y., Koga K., Hirota Y., Akiyama I., Izumi G., Takamura M., Nagai M., Harada M., Hirata T., Yoshino O., Kawana K., Fujii T., Osuga Y. IL-1β increases expression of tryptophan 2.,3-dioxygenase and stimulates tryptophan catabolism in endometrioma stromal cells. Am J Reprod Immunol. 2014; 72 (5): 496-503. DOI: 10.1111/aji.12282
  • Umhau J.C., George D.T., Heaney R.P., Lewis M.D., Ursano R.J., Heilig M., Hibbeln J.R., Schwandt M.L. Low vitamin D status and suicide; a case-control study of active duty military service members. PLoS One. 2013; 8 (1): e51543. DOI: 10.1371/journal.pone.0051543
  • Zhang Y., Leung D.Y., Richers B.N., Liu Y., Remigio L.K., Riches D.W., Goleva E. Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J Immunol. 2012; 188 (5): 2127-2135. DOI: 10.4049/jimmunol.1102412
  • Ventorp F., Barzilay R., Erhardt S., Samuelsson M., Träskman-Bendz L., Janelidze S., Weizman A., Offen D., Brundin L. The CD44 ligand hyaluronic acid is elevated in the cerebrospinal fluid of suicide attempters and is associated with increased blood-brain barrier permeability. J Affect Disord. 2016; 193: 349-354. DOI: 10.1016/j.jad.2015.12.069
  • Torres-Platas S.G., Cruceanu C., Chen G.G., Turecki G., Mechawar N. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav Immun. 2014; 42: 50-59. DOI: 10.1016/j.bbi.2014.05.007
  • Schnieder T.P., Trencevska I., Rosoklija G., Stankov A., Mann JJ., Smiley J., Dwork A.J. Microglia of prefrontal white matter in suicide. J Neuropathol Exp Neurol. 2014; 73 (9): 880-890. DOI: 10.1097/NEN.0000000000000107
  • Steiner J., Bielau H., Brisch R., Danos P., Ullrich O., Mawrin C., Bernstein H.G., Bogerts B. Immunological aspects in the neurobiology of suicide; elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res. 2008; 42 (2): 151-157. DOI: 10.1016/j.jpsychires.2006.10.013
  • Baharikhoob P., Kolla N.J. Microglial Dysregulation and Suicidality; A Stress-Diathesis Perspective. Front Psychiatry. 2020; 11: 781. DOI: 10.3389/fpsyt.2020.00781
  • Wisłowska-Stanek A., Kołosowska K., Maciejak P. Neurobiological basis of increased risk for suicidal behaviour. Cells. 2021; 10 (10): 2519. DOI: 10.3390/cells10102519
  • Sandhu J.K., Wu K.K., Bui T.L., Armstrong A.W. Association Between Atopic Dermatitis and Suicidality; A Systematic Review and Meta-analysis. JAMA Dermatol. 2019; 155 (2): 178-187. DOI: 10.1001/jamadermatol.2018.4566
  • Qin P., Waltoft B.L., Mortensen P.B., Postolache T.T. Suicide risk in relation to air pollen counts; a study based on data from Danish registers. BMJ Open. 2013; 3 (5): e002462. DOI: 10.1136/bmjopen-2012-002462
  • Li Z., Yang Y., Dong C., Li L., Cui Y., Zhao Q., Gu Z. The prevalence of suicidal ideation and suicide attempt in
Еще
Статья научная