Эпителиально-мезенхимальный переход, трансдифференциация, репрограммирование и метаплазия: современный взгляд на проблему

Автор: Мнихович М.В., Вернигородский С.В., Буньков К.В., Мишина Е.С.

Журнал: Вестник Национального медико-хирургического центра им. Н.И. Пирогова @vestnik-pirogov-center

Рубрика: Обзоры литературы

Статья в выпуске: 2 т.13, 2018 года.

Бесплатный доступ

Короткий адрес: https://sciup.org/140237182

IDR: 140237182

Список литературы Эпителиально-мезенхимальный переход, трансдифференциация, репрограммирование и метаплазия: современный взгляд на проблему

  • Аруин, Л.И. О морфогенезе кишечной метаплазии слизистой оболочки желудка/Под ред. акад. АМН СССР В.Х. Василенко и проф. А.С. Логинова//Актуальные вопросы гасторэнтерологии. Сборник трудов -М., 1972; С. 103-108.
  • Zeisberg, M., Eric, G.N. Biomarkers for epithelial-mesenchymal transitions. J. Clin. Invest. 2009; 119 (6): 429-1437.
  • Thiery, J.P., Sleeman, J.P. Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 2006; 7 (2): 131-142.
  • Hay, E.D. An overview of epithelio-mesenchymal transformation. Acta Anat. 1995; 154: 8-20.
  • Пасечник, Д.Г. Роль эпителиально-мезенхимального перехода в генезе хронической болезни почек и почечно-клеточного рака (проблемы и перспективы). Науковий вiсник мiжнародного гуманiтарного унiверситету. 2014; 6: 30-33.
  • Kalluri, R., Robert, A.W. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 2009; 119 (6): 1420-1428.
  • Cowin, P., Rowlands, T.M., Hatsell, S.J. Cadherins and catenins in breast cancer. Curr Opin Cell Biol. 2005; 17 (5): 499-508.
  • Bukholm, I.K., Nesland, J.M., Borresen-Dale, A.L. Re-expression of E-cadherin, alpha-catenin and beta-catenin, but not of gamma-catenin, in metastatic tissue from breast cancer patients. J Pathol. 2000; 190 (1): 15-19.
  • Zhang, X.H., Liang, X., Liang, X.H. The Mesenchymal-Epithelial Transition During In Vitro Decidualization. Reprod. Sci. 2013; 20 (4): 354.-360.
  • Cano, A., Perez-Moreno, M.A., Rodrigo, I. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000; 2 (2): 76-83.
  • Hajra, K.M., Chen, D.Y., Fearon, E.R. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res. 2002; 62 (6): 1613-1618.
  • Nieto, M.A. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002; 3 (3): 155-166.
  • Pedersen, K.B., Nesland, J.M., Fodstad, O., Maelandsmo, G.M. Expression of S100A4, E-cadherin, alpha-and beta-catenin in breast cancer biopsies. Br J Cancer. 2002; 87 (11): 1281-1286.
  • Yang, M.H., Wu, K.J. TWIST activation by hypoxia inducible factor-1 (HIF-1): implications in metastasis and development. Cell Cycle. 2008; 7 (14): 2090-2096.
  • Herreros, A.G., Peiro, S., Nassour, M., Savagner, P. Snail family regulation and epithelial mesenchymal transitions in breast cancer progression. J Mammary Gland Biol Neoplasia.2010; 15 (2): 135-147.
  • Jiang, Y.G., Luo, Y., He, D.L. Role of Wnt/beta-catenin signaling pathway in epithelial-mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1alpha. Int J Urol. 2007; 14 (11): 1034-1039.
  • Batlle, E., Sancho, E., Franci, C. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000; 2 (2): 84-89.
  • Kurrey, N.K., Bapat, S.A. Snail and Slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecol Oncol. 2005; 97 (1): 155-165.
  • Scherbakov, A.M., Andreeva, O.E., Shatskaya, V.A., Krasil’nikov, M.A. The relationships between snail and estrogen receptor signaling in breast cancer cells. Journal of cellular biochemistry. 2012; 113 (6): 2147-2155.
  • Vega, S., Morales, A.V., Ocana, O.H. Snail blocks the cell cycle and confers resistance to cell death. Genes Dev. 2004; 18 (10): 1131-1143.
  • Lamouille, S., Jian, Xu., Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nature Reviews Molecular Cell Biology. 2014; 15: 178-196.
  • Российский онкологический портал профессионального общества Новости онкологии 06.03.2014/URL: http://www.rosoncoweb.ru/news/oncology/2014/03/06/(Дата обращения: 06.03.2014).
  • Hood, J.D., Cheresh, D.A. Role of integrins in cell invasion and migration. Nat Rev Cancer. 2002; 2 (2): 91-100.
  • Лазаревич, Н.Л., Флейшман, Д.И. Тканеспецифические транскрипционные факторы в прогрессии эпителиальных опухолей. Биохимия. 2008; 73 (5): 735-750.
  • Eberhard, D., Tosh, D. Transdifferentiation and metaplasia as a paradigm for understanding development and disease. Cellular and molecular life sciences CMLS. 2008; 65 (1): 33-40.
  • Kupffer, C. Epithel und Drüsen des menschlichen Magens. Festschr. Arztl. Ver., München, 1883: 22.
  • Virchow. Uber Metaplasie. Virch. Arch. 1884: 97.
  • Beresford, W.A. Direct transdifferentiation: Can cells change their phenotype without dividmg? Cell Differ. Dev. 1990; 29: 81-93.
  • Chia-Ning Shen., Zoë D. Burke, David Tosh. Transdifferentiation, Metaplasia and Tissue Regeneration. Review. Organogenesis. 2004; 1(2): 36-44.
  • Eguchi, G. Introduction: Transdifferentiation. Semin. Cell Biol. 1995; 6: 105-108.
  • Tosh, D. Slack JMW How cells change their phenotype. Nat. Rev. Mol. Cell Biol. 2002; 3: 187-94.
  • Stemmermann, G.N. Intestinal metaplasia of the stomach. A status report. Cancer. 1994; 74: 556-564.
  • Chan, C.W.M, Newton, W.A, Yinget, L. Gastrointestinal differentiation marker Cytokeratin 20 is regulated by homeobox gene CDX1. PNAS. 2009; 106 (6): 1936-1941.
  • Fukamachi, H. Runx3 controls growth and differentiation of gastric epithelial cells in mammals. mailto: Dev. Growth and Differ. 2006; 48 (1): 1-13.
  • Mutoh Hiroyuki, Sakurai Shinji, Satoh Kiichi. Development of Gastric Carcinoma from Intestinal Metaplasia in Cdx2-transgenic Mice. Cancer Research. 2004; 64: 7740-7747.
  • Eda, A., Osawa, H., Yanaka, I. Expression of homeobox gene CDX2 precedes that of CDX1 during the progression of intestinal metaplasia. J. Gastroenterol. 2002; 37 (2): 94-100.
  • Samuel, K., Kent M Chu, John Moon Ching Luk Expression of CDX2 and Licadherin in intestinal metaplasia and adenocarcinoma of the stomach. Proc. Amer. Assoc. Cancer Res. 2004; 45: 4242.
  • Gehring, W.J., Affolter, M., Bürglin T. "Homeodomain proteins". Annual review of biochemistry. 1994; 63: 487-526.
  • Babu, М.М., Luscombe, N.M., Aravind, L., Gerstein, M., Teichmann, S.A. Structure and evolution of transcriptional regulatory networks. Curr. Opin. Struct. Biol. 2004; 14 (3): 283-291.
  • Mutoh, H., Sakurai, S., Satoh, K. Cdx1 induced intestinal metaplasia in the transgenic mouse stomach: comparative study with Cdx2 transgenic mice. Gut. 2004; 53: 1416-1423.
  • Patri'cia Mesquita, Almeida Raquel, Nuno Lunet. Metaplasia -A Transdifferentiation Process that Facilitates Cancer Development: The Model of Gastric Intestinal Metaplasia. Critical Reviews TM in Oncogenesis. 2006; 12 (1-2): 3-26.
  • Dimmler, A., Brabletz, T. Transcription of Sonic Hedgehog, a Potential Factor for Gastric Morphogenesis and Gastric Mucosa Maintenance, Is Up-regulated in Acidic Conditions. Laboratory investigation. 2003; 83 (12): 1829-1837.
  • Трумэн, Д. Биохимия клеточной дифференцировки. М.: Изд-во «Мир», 1976. -188 с.
  • Gutierrez-Gonzalez, L., Wright, N.A. Biology of intestinal metaplasia in 2008: More than a simple phenotypic alteration. Dig. Liver Dis. 2008; 40: 510-522.
  • Kirchner, T., Müller, S., Hattori, T., Mukaisyo, K., Papadopoulos, T., Brabletz, T., Jung, A. Metaplasia, intraepithelial neoplasia and early cancer of the stomach are related to dedifferentiated epithelial cells defined by cytokeratin-7 expression in gastritis/A. Jung//Virchows Arch. 2001; 439 (4): 512-522.
  • Houghton, J., Stoicov, С., Nomura, S. Gastric cancer originatin from bone marrow-derived cells. Science. 2004; 306: 1568-1571.
  • Wilmut, I., Schnieke, A.E., McWhir, J. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997; 385 (6619): 810-813.
  • Cowan, C.A., Atienza, J., Melton, D.A. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science. 2005; 309: 1369-1373.
  • Tada, M., Takahama, Y., Abe, K. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr. Biol. 2001; 11: 1553.
  • Gretchen, V. Breakthrough of the year: Reprogramming cells. Science. 2008; 322: 1766-1767.
  • Takahashi, K., Yamanaka, S. Induction of pluripotent stem Cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126 (4): 663-676.
  • Shinya, Y. Induced Pluripotent Stem Cells: Past, Present, and Future. Cell Stem Cell. 2012; 10 (6): 678-684
  • Wong, A.P., Rossant, J. Generation of Lung Epithelium from Pluripotent Stem Cells. Current pathobiology reports. 2013; 1 (2): 137-145.
  • Tilanth, M.J. MicroRNA-mediated in vitro and in vivo Direct Reprogramming of Cardiac Fibroblasts to Cardiomyocytes. Circ Res. 2012; 110 (11): 1465-1473.
  • Ankur, S., Shalu, S. Adhesion strength-based, label-free isolation of human pluripotent stem cells. Nature Methods. 2013; 10: 438-444.
  • Mou, H., Zhao, R., Sherwood, R., Ahfeldt, T., Rajagopal, J. Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs. Cell stem cell. 2012; 10 (4): 385-397.
  • Sheng, C., Zheng, Q., Wu, J. Generation of dopaminergic neurons directly from mouse fibroblasts and fibroblast-derived neural progenitors. Cell Res; 2012; 22: 769-772.
  • Lin Cheng. Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Research. 2014; 24: 665-679.
  • Richard, P., Halley-Stott, Vincent Pasque, Gurdon J.B. Nuclear reprogramming. Development. 2013; 140: 2468-2471.
Еще
Статья обзорная