Эпоксидные композиты, модифицированные каменноугольной смолой

Автор: Ерофеев В.Т., Богатов А.Д., Кондакова И.Э., Ивлев В.И., Юдин В.А., Афонин В.В.

Журнал: Нанотехнологии в строительстве: научный интернет-журнал @nanobuild

Рубрика: Строительное материаловедение

Статья в выпуске: 6 т.16, 2024 года.

Бесплатный доступ

Введение. Показано, что, несмотря на значительный прогресс в создании высококачественных полимерных композитов с уникальным сочетанием ключевых показателей, отдельные вопросы в этой области изучены недостаточно полно. В данной работе приведены результаты исследований структуры материалов на эпоксидно-каменноугольном связующем и анализа физико-механических свойств на уровне микроструктуры, на которые влияют различные факторы: количественное содержание модифицирующих добавок и различных наполнителей, степень дисперсности частиц, их размер и форма. Выявлено, что одним из потенциальных модификаторов микроструктуры композитов являются частицы наноразмерного уровня.

Еще

Полимерные композиты, эпоксидная смола, каменноугольная смола, растворители, наполнители, наночастицы, прочность, деформативность, химико-биологическая стойкость, долговечность

Короткий адрес: https://sciup.org/142243713

IDR: 142243713   |   DOI: 10.15828/2075-8545-2024-16-6-533-548

Список литературы Эпоксидные композиты, модифицированные каменноугольной смолой

  • Хозин В.Г. Усиление эпоксидных полимеров. Казань: Дом печати, 2004. 446 с.
  • R. Bedi, R. Chandra, S.P. Singh. Reviewing some properties of polymer concrete. Indian Concr. J. 2014; 88: 47-68.
  • S. Daghash, R. Tarefder, M. Reda Taha, A New Class of Polymer Concrete with Improved Fatigue Strength Using Carbon Nanotubes, 2015. https://doi.org/10.1007/978-3-319-17088-6_37
  • Y. Feng, Y. Su, N. Lu, S. Shah. Meta concrete: exploring novel functionality of concrete using nanotechnology. Eng. Sci. 2020. https://doi.org/10.30919/es8d816
  • Бобрышев А.Н. Физика и синергетика дисперсно-неупорядоченных конденсированных композитных систем: монография / А.Н. Бобрышев, В.Т. Ерофеев, В.Н. Козомазов. СПб.: Наука, 2012. 473 с.
  • Федорцов А.П. Физико-химическое сопротивление строительных композитов и способы его повышения. Саранск: Изд-во Мордовского ун-та, 2015. 462 с.
  • J. Wang, Y. Fan, C. Zhu, S. Lu, J. Liu. Mesoscopic finite element simulation on the interfacial bonding performance of functionally gradient concrete. ES Mater. Manuf. 2020. https://doi.org/10.30919/esmm5f810
  • J.P. Gorninski, C.de S. Kazmierczak. Evaluation of the chemical strength of polymeric concretes in aggressive environments. Ambiente Construído. 2008; 8:105-113.
  • B. Fiedler, F.H. Gojny, M.H.G. Wichmann, M.C.M. Nolte, K. Schulte. Fundamental aspects of nano-reinforced composites. Compos. Sci. Technol. 2006; 6: 3115-3125. https://doi.org/10.1016/j.compscitech.2005.01.014
  • Соломатов В.И. Биологическое сопротивление материалов: монография / В.И. Соломатов, В.Т. Ерофеев, В.Ф. Смирнов и др. Саранск: Изд-во Мордов. ун-та, 2001. 193 с.
  • Erofeev, V., Gubanov, D., Bogatov, A., Bulgakov, A. Frame polymerbetons based on fillers of different nature. Materials Science Forum, 2020;1011: 164–170. https://doi.org/10.4028/www.scientific.net/MSF.1011.164
  • Thomas, C., Lombillo, I., Polanco, J.A. Polymeric and cementitious mortars for the reconstruction of natural stone structures exposed to marine environments. Composites Part B: Engineering. 2010; 41(8): 663-672. https://doi.org/10.1016/j.compositesb.2010.08.007
  • Berndt, M.L. Evaluation of coatings, mortars and mix design for protection of concrete against sulphur oxidizing bacteria. Construction and Building Materials. 2011; 25(10):3893-3902. https://doi.org/10.1016/j.conbuildmat.2011.04.014
  • Valix, M., Zamri, D., Mineyama, H. Microbiologically induced corrosion of concrete and protective coatings in gravity sewers. Chinese Journal of Chemical Engineering. 2012; 20 (3):433-438. https://doi.org/10.1016/S1004-9541(11)60150-X
  • Vipulanandan, C., Parihar, A., Issac, M. Testing and Modeling Composite Coatings with Silanes for Protecting Reinforced Concrete in Saltwater Environment. Journal of Materials in Civil Engineering. 2011; 23(12): 1602-1608. https://doi.org/10.1061/ (ASCE)MT.1943-5533.0000330
  • Hua, W., Jiang, H., Zhou, Z. Resistance to nitric acid corrosion of latex modified sulphoaluminate cement mortar. Advanced Materials Research, 2012; 382: 404-407. https://doi.org/10.4028/www.scientific.net/AMR.382.404
  • Bertron, A., Duchesne, J. Attack of cementitious materials by organic acids in agricultural and agrofood effluents. RILEM State-of-theArt Reports. 2013; 10: 131-173. https://doi.org/10.1007/978-94-007-5413-3_6
  • Vipulanandan, C, Liu, J. Polymer Coatings for Concrete Surfaces: Testing and Modeling. Handbook of Environmental Degradation of Materials: Second Edition. September 24. 2012; 12: 621-653. https://doi.org/10.1016/B978-1-4377-3455-3.00021-3
  • Nazemi, M.K., Valix, M. Evaluation of acid diffusion behaviour of amine-cured epoxy coatings by accelerated permeation testing method and prediction of their service life. Progress in Organic Coatings. 2016; 97: 307-312. https://doi.org/10.1016/j.porgcoat.2016.04.025
  • Roghanian, N., Banthia, N. Development of a sustainable coating and repair material to prevent bio-corrosion in concrete sewer and waste-water pipes. Cement and Concrete Composites. 2019; 100: 99-107. https://doi.org/10.1016/j.cemconcomp.2019.03.026
  • Herisson, J., Guéguen-Minerbe, M., van Hullebusch, E.D. Influence of the binder on the behaviour of mortars exposed to H2S in sewer networks: a long-term durability study. Materials and Structures/Materiaux et Constructions. 2017; 50(1): 8. https://doi.org/10.1617/s11527-016-0919-0
  • Vipulanandan, C., Liu, J. Polymer Coatings for Concrete Surfaces: Testing and Modeling. Handbook of Environmental Degradation of Materials: Second Edition. 2012: 621-653. https://doi.org/10.1016/B978-1-4377-3455-3.00021-3
  • Nazemi, M.K.,Valix, M. Evaluation of acid diffusion behavior of amine-cured epoxy coatings by accelerated permeation testing method and prediction of their service life. Progress in Organic Coatings. 1 August 2016; (97): 307-312. https://doi.org/10.1016/j.porgcoat.2016.04.025
  • Benosman, A.S., Mouli, M., Taibi, H. Resistance of polymer (PET)-mortar composites to aggressive solutions. International Journal of Engineering Research in Africa. 2011; 5: 1-15. https://doi.org/10.4028/www.scientific.net/JERA.5.1
  • Valix, M., Mineyama, H., Chen, C. Effect of film thickness and filler properties on sulphuric acid permeation in various commercially available epoxy mortar coatings. Water Science and Technology. 2011; 64 (9): 1864-1869. https://doi.org/10.2166/wst.2011.743
  • Gutarowska, B., Kotynia, R., Bieliński, D. New sulfur organic polymer-concrete composites containing waste materials: Mechanical characteristics and resistance to biocorrosion. Materials, 2019; 12 (16): 2602. https://doi.org/10.3390/ma12162602
  • Pereyra, A.M., Gonzalez, M.R., Rodrigues,T.A. Enhancement of biocorrosion resistance of epoxy coating by addition of Ag/Zn exchanged a zeolite. Surface and Coatings Technology. 270, 25 May 2015; 284-289. https://doi.org/10.1016/j.surfcoat.2015.02.044
  • Amin, M., Bassuoni, M.T. Response of concrete with blended binders and nanoparticles to sulfuric acid attack. Magazine of Concrete Research. 2018; 70(12): 617-632. https://doi.org/10.1680/jmacr.17.0008
  • Achchige, R.S., Vitanage, D., Bustamante, H. The effect of moisture on bonding behaviour of epoxy on concrete. Proceedings of the 4th Asia-Pacific Conference on FRP in Structures, APFIS; 2013.
  • Sokolova Yu.A. Modified epoxy adhesives and coatings in construction / Yu.A. Sokolova, E.M. Gottlieb. M.: Stroyizdat; 1990.
  • D. Dutta, S. Ghosh. Comparative study on the performance of blended and nonblended fly ash geopolymer composites as durable construction materials. Adv. Civ. Eng. 2018; 1-12. https://doi.org/10.1155/2018/2940169
  • M. Muthukumar, D. Mohan/ Studies on polymer concretes based on optimized aggregate mix proportion. Eur. Polym. J. 2004; 40: 2167-2177. https://doi.org/10.1016/j.eurpolymj.2004.05.004
  • H. Xie, B. Liu, Q. Sun, Z. Yuan, J. Shen, R. Cheng. Cure kinetic study of carbon nanofibers/epoxy composites by isothermal DSC. J. Appl. Polym. Sci. 2005; 96 (2): 329-335.
  • M.R. Taha, U.F. Kandil, E. Soliman, Generation of polymer concretes incorporating carbon nanotubes. US8426501B1, 2011. https://patentimages.storage.googleapis.com/1f/fa/46/d81db94052624e/US8426501.pdf (accessed August 30, 2021).
  • X.-L. Xie, Y.-W. Mai, X.-P. Zhou. Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Mater. Sci. Eng.: R: Rep. 2005; 49: 89-112. https://doi.org/10.1016/j.mser.2005.04.002
  • Ерофеев В.Т., Афонин В.В., Ерофеева И.В., Максимова И.Н., Аль Дулайми Салман Давуд Салман, Аль Кадхими Зинах Али Хассун AnyRegression. Заявка № 2021614937 от 09.04.2021. Свидетельство о государственной регистрации программы для ЭВМ № 2021615823. Дата публикации и номер бюллетеня: 13.04.2021 Бюл. № 4.
  • Erofeev V.T., Ivlev V.I., Sigachyov A.F., Fomin N.E., Yudin V.A., Blohin A.N., Yel’chishcheva T.F., Suhorukov A.K., Tkachev A.G. Mechanical properties of epoxy resin with additives soot and nanotubes. Materials Physics and Mechanics. 2021; 47(1): 20-30.
  • Q. Wang, J. Zhang, Z. Zhang, Y. Hao, K. Bi. Enhanced dielectric properties and energy storage density of PVDF nanocomposites by co-loading of BaTiO3 and CoFe2O4 nanoparticles. Adv. Compos. Hybrid Mater. 2020; 3 (1): 58-65. https://doi.org/10.1007/s42114-020-00138-4
  • Kong L., Fang J., Zhou X. Assessment of coatings for protection of cement paste against microbial induced deterioration through image analysis. Construction and Building Materials, 2018; 91: 342-353. https://doi.org/10.1016/j.conbuildmat.2018.10.04
  • Berndt M.L. Evaluation of coatings, mortars and mix designfor protection of concrete against sulphur oxidising bacteria. Construction and Buijding Materials. October. 2011; 25(10): 3893-3902. https://doi.org/10.1016/j.conbuildmat.2011.04.014
  • Valix M., Zamri D., Mineyama H., Cheung W.H., Shi J., Bustamante H. Microbiologically induced corrosion of concrete and protective coatings in gravity sewers. Chinese Journal of Chemical Engineering. June. 2012; 20 (3): 433-438. https://doi.org/10.1016/S1004-9541(11)60150-X
  • Pereyra A.M., Gonzalez M.R., Rodrigues T.A. Enhancement of biocorrosion resistance of epoxy coating by addition of Ag/Zn exchanged a zeolite. Surface and Coatings Technology. May. 2015; 270 (25):284-289. https://doi.org/10.1016/j.surfcoat.2015.02.044
  • Ribeiro C.C., Da Silva Pinto J.D., Godoy G.C. Microstructural and topographic characterization of concrete protected by acrylic paint. Materials Research, 2013; 16(4): 817-823. https://doi.org/10.1590/S1516-14392013005000042
  • Tokach Y.E., Rubanov Y.K., Vasilenko M.I. Design of new approaches and technological solutions of obtaining biocidal compositions to protect industrial and civil buildings and constructions against biodeterioration. Research Journal of Applied Sciences, 2014; 9(11): 774-778. https://doi.org/10.3923/rjasci.2014.774.778
  • Pazoki M., Abdoli M.A., Ghasemzade R. Comparative evaluation of poly urethane and poly vinyl chloride in lining concrete sewer pipes for preventing biological corrosion. International Journal of Environmental Research, 2016; 10( 2): 305-312.
Еще
Статья научная