К выбору марки резины при сервисном обслуживании амортизирующих устройств
Автор: Мосур В.Г., Шарков О.В.
Журнал: Технико-технологические проблемы сервиса @ttps
Рубрика: Диагностика и ремонт
Статья в выпуске: 1 (67), 2024 года.
Бесплатный доступ
Выполнен сравнительный анализ эксплуатационных свойств резины различных марок для изготовления демпфирующих элементов механических амортизирующих устройств. В качестве критерия сравнения принята величина ресурса наработки до начала разрушения материала. Показано, что наибольшим ресурсом при циклическом наружении обладают упругие элементы из резины марки 51-1562 на основе изопренового каучука.
Сервисное обслуживание, демпфирующий элемент, вибрация, разрушение, ресурс
Короткий адрес: https://sciup.org/148328330
IDR: 148328330
Список литературы К выбору марки резины при сервисном обслуживании амортизирующих устройств
- Куклин М.В. Снижение шума и вибрации в системах судовой гидравлики // Судостроение. 2019. № 5 (846). С. 34–35.
- Ломакин В.О., Михеев К.Г., Веселов А.А., Фоменко В.Д. Исследование возможности моделирования вибраций корпуса насоса из-за воздействия нестационарных гидродинамических сил // Известия высших учебных заведений. Машиностроение. 2022. № 12 (753). С. 107–115. doi: 10.18698/0536-1044-2022-12-107-115.
- Губарев П.В., Больших И.В., Шабаев В.В. Анализ существующих диагностических комплексов для контроля уровня вибрации узлов локомотивов // Сборка в машиностроении, приборостроении. 2020. № 7. С. 318–320.
- Fayziev S.K., Haydarova N.M. Methods of reducing the vibration and noise level in sewing machines // Modern innovations, systems and technologies. 2022. Vol. 2. No 2. P. 428–439. doi: 10.47813/2782-2818-2022-2-2-0428-0439.
- Ghazali M.H.M., Rahiman W. Vibration analysis for machine monitoring and diagnosis: A Systematic review // Shock and vibration. 2021. 9469318. https://doi.org/10.1155/2021/9469318.
- Курзина Е.Г., Колмаков А.Г., Филиппов В.Н., Семак А.В., Курзина А.М. Демпфирующие композиты из материалов с различающимися упруго-гистерезисными свойствами для сэндвич-амортизаторов железнодорожного транспорта // Материаловедение. 2020. № 1. С. 25–32.
- Алексеев А.Е., Думанский И.О., Прохоров А.В. Пластинчатые амортизаторы-демпферы в натяжных устройствах ленточнопильных станков // Известия высших учебных заведений. Лесной журнал. 2021. № 5 (383). С. 142–149. doi: 10.37482/0536-1036-2021-5-142-149.
- Белодедова А.А. Анализ применения амортизаторов для защиты от вибрации // Природные и техногенные риски (физико-математические и прикладные аспекты). 2023. № 2 (45). С. 67–73.
- Величкович А.С. Некоторые конструктивные особенности оболочечных пружин для буровых амортизаторов // Химическое и нефтегазовое машиностроение. 2007. № 8. С. 26–28.
- Danilin A.N., Kurbatov A.S., Zhavoronok S.I. Simulation of a multi-frequency stockbridge vibration damper oscilations with energy scattering hysteresis // International Journal for computational civil and structural engineering. 2020.Vol. 16. No 4. P. 29–37. doi: 10.22337/2587-9618-2020-16-4-29-37.
- Galluzzi R., Circosta S., Amati N., Tonoli A. Rotary regenerative shock absorbers for automotive suspensions // Mechatronics. 2021. Vol. 77. 102580. https://doi.org/10.1016/j.mechatronics.2021.102580.
- Смирнов О.В. Изготовление упругих демпфирующих элементов амортизаторов из металлической резины // Динамика систем, механизмов и машин. 2004. № 3. С. 79–82.
- Кеглин Б.Г. Выбор и исследование резин для вагонных амортизаторов удара // Каучук и резина. 1984. № 1. С. 32–33.
- Белкин А.Е., Хоминич Д.С. Расчет больших деформаций арочного амортизатора с учетом объемной сжимаемости резины // Вестник Московского государственного технического университета им. Н.Э. Баумана. Серия Машиностроение. 2012. № 2 (87). С. 3–11.
- Черныш А.А., Яковлев С.Н. Экспериментальное определение температуры нагрева полиуретанового амортизатора при динамическом нагружении // Вестник государственного университета морского и речного флота им. адмирала С.О. Макарова. 2019. Т. 11. № 5. С. 893–901. doi: 10.21821/2309-5180-2019-11-5-893-901.
- Long X-H., Ma Y-T., Yue R., Fan J. Experimental study on impact behaviors of rubber shock absorbers // Construction and building materials. 2018. Vol. 173. P. 718–729. https://doi.org/10.1016/j.conbuildmat.2018.04.077.
- Вентклиматстрой [Электронный ресурс] URL: https://pritochka.ru/products/vibroizolyatory-vr-201-vr-202-vr-203/ (дата обращения 15.10.2023).
- Научно-исследовательский институт резиновых покрытий и изделий [Электронный ресурс] URL: https://www.niirpi.com/produktsiya/amortizatory/amortizatory-korabelnye-so-strahovkoj-tipa-akss/ (дата обращения 20.10.2023).
- Потураев В.Н., Дырда В.И. Резиновые детали машин. Москва: Машиностроение, 1977. 214 с.
- Михайлов Ю.К., Иванов Б.С. Муфты с неметаллическими упругими элементами. Ленинград: Машиностроение, 1987. 145 с.
- Семенов В.К., Белкин А.Е. Математическая модель вязкоупругого поведения резины при циклическом нагружении // Известия высших учебных заведений. Машиностроение. 2014. № 2 (647). С. 46–51.
- Дудченко А.А., Башаров Е.А. Определение теплообразования в слоях резины слоистой балки типа торсион при циклическом нагружении // Труды МАИ. 2011. № 42. С. 1–15.
- Пелевин А.Г., Свистков А.Л., Адамов А.А., Bernd L., Heinrich G. Алгоритм поиска констант в модели механического поведения резины // Механика композиционных материалов и конструкций. 2010. Т. 16. № 3. С. 313–328.
- Прокопчук Н.Р., Кудинова Г.Д., Асловская О.А., Гугович С.А. Исследование влияния циклических деформаций и озона на долговечность резин // Труды Белорусского государственного технологического университета. Серия 3. Химия и технология неорганических веществ. 1996. № 4. С. 76–81.
- Дырда В.И. Резиновые элементы вибрационных машин. Киев: Наукова думка, 1980. 164 с.
- Park J., Kim Y.,Yoon J.W., So H., Lee J., Ko S. Finite element modeling and durability evaluation for rubber pad forming process // IOP Conference series: Materials science and engineering. 2019. Vol. 651. 012096. doi: 10.1088/1757-899X/651/1/012096.
- Moon S-I., Cho I-J., Woo C-S., Kim W-D. Study on determination of durability analysis process and fatigue damage parameter for rubber component // Journal of mechanical science and technology. 2011. Vol. 25. P. 1159–1165. https://doi.org/10.1007/s12206-011-0221-6.