Кальций: физиологическая роль, источники и нормирование в промышленном птицеводстве (обзор)
Автор: Казаев К.А., Холодилина Т.Н., Сизова Е.А., Лебедев С.В., Сальникова Е.В.
Журнал: Сельскохозяйственная биология @agrobiology
Рубрика: Обзоры, проблемы
Статья в выпуске: 2 т.59, 2024 года.
Бесплатный доступ
Кальций критически важен для сельскохозяйственных животных и птицы в условиях современных интенсивных технологий, поэтому поиск его новых источников продолжается. Основные критерии их оценки - высокая биодоступность этого макроэлемента в сочетании с низкой стоимостью такой кормовой добавки. Физиологическое действие кальция распространяется на все системы органов (G.S. Baird, 2011). Следовательно, в птицеводстве рецептуры рационов цыплят-бройлеров и кур-несушек должны разрабатываться с учетом роли этого макроэлемента в метаболических путях, участия ионов кальция в прямых и косвенных химических взаимодействиях с другими неорганическими и органическими соединениями, клеточными и надклеточными структурами. Особенно актуален поиск более доступных и эффективных способов нормализации рационов сельскохозяйственной птицы при высоких потерях молодняка и яиц. У птицы 99 % кальция содержится в костях, 1 % - в мягких тканях (Д. Оберлис с соавт., 2008). Однако современные фундаментальные и клинические исследования доказывают, что роль кальция в физиологических процессах не ограничивается формированием структуры костей и яичной скорлупы. От достаточной концентрации кальция в крови зависит секреция и действие гормонов, проницаемость клеточных мембран, нервная проводимость, мышечные сокращения (R. Stehle с соавт., 2007; E.T. Kavalali, 2015). Кальций увеличивает синтез коллагена, что ускоряет заживление ран (J. Zhang с соавт., 2021), влияет на функции белков, с которыми связывается в качестве кофактора (C. Umerah с соавт., 2023). Апоптоз, его интенсивность, межклеточная адгезия при формировании соединительной ткани кальций-зависимы (D. Goll с соавт., 2003). Количество костной ткани в организме генетически запрограммировано. При недостатке кальция в период роста тело не достигнет необходимых параметров (K. Okuyama с соавт., 2022). Логично, что одной из важнейших патогномоничных причин большого числа отклонений от нормы может быть дефицит кальция, нарушение его усвояемости, низкая биодоступность. Общепризнанными источниками кальция служат его соли: карбонат, цитрат, лактат, дикальцийфосфат, глюконат, сульфат и их комбинации с витамином D3, микроэлементами, эстрогенами (F. Zhang с соавт., 2018; B.L. Damron с соавт., 1995; Н.С. Стрелков с соавт., 2008; L.P. Yang с соавт., 2018). Существенное различие между этими соединениями заключается в разной биодоступности Ca. Механизм доступности кальция из солей известен и зависит от нескольких факторов, прежде всего от дозы, одновременного поступления синергистов и антагонистов, кислотности желудочного сока, режима потребления (F. Bronner, 2023; S. Christakos, 2012; R. Alexander с соавт., 2023). Поэтому необходимо тщательно подбирать состав рациона и учитывать множественные взаимодействия между его компонентами в желудочно-кишечном тракте (ЖКТ) животных. В обзоре освещены вопросы биохимии кальция в организме животных и птицы. Рассмотрены нормы поступления кальция с рационом в России и за рубежом, механизмы его усвоения в разных отделах ЖКТ, синергетические и антагонистические взаимодействия ионов кальция с другими элементами и органическими соединениями, а также метаболические пути трансформаций кальция в различных системах организма.
Кальций, куры-несушки, цыплята-бройлеры, рецепторы, синергисты, антагонисты, нормирование рациона
Короткий адрес: https://sciup.org/142242443
IDR: 142242443 | DOI: 10.15389/agrobiology.2024.2.237rus
Список литературы Кальций: физиологическая роль, источники и нормирование в промышленном птицеводстве (обзор)
- Bohrer B.M. Review: Nutrient density and nutritional value of meat products and non-meat foods high in protein. Trends in Food Science & Technology, 2017, 65: 103-112 (doi: 10.1016/j.tifs.2017.04.016).
- Фисинин В.И. Уровень динамики развития мясного и яичного птицеводства России. Ре-зультаты работы отрасли в 2022 году. Птицеводство, 2023, 4: 4-8.
- Maharjan P., Martinez D.A., Weil J., Suesuttajit N., Umberson C., Mullenix G., Hilton K.M., Beitia A., Coon C.N. Review: Physiological growth trend of current meat broilers and dietary protein and energy management approaches for sustainable broiler production. Animal, 2021, 15(Suppl. 1): 100284 (doi: 10.1016/j.animal.2021.100284).
- Toscano M.J., Dunn I.C., Christensen J.-P., Petow S., Kittelsen K., Ulrich R. Explanations for keel bone fractures in laying hens: are there explanations in addition to elevated egg production. Poultry Science, 2020, 99(9): 4183-4194 (doi: 10.1016/j.psj.2020.05.035).
- Korver D.R. Review: Current challenges in poultry nutrition, health, and welfare. Animal, 2023, 17(Suppl. 1): 100755 (doi: 10.1016/j.animal.2023.100755).
- Opengart K., Bilgili S.F., Warren G.L., Baker K.T., Moore J.D. Incidence, severity, and rela-tionship of broiler footpad lesions and gait scores of market-age broilers raised under commercial conditions in the southeastern United States. Poultry Science, 2018, 27(3): 424-432 (doi: 10.3382/japr/pfy002).
- Pritchard A., Robison C., Nguyen T., Nielsen B.D. Silicon supplementation affects mineral me-tabolism but not bone density or strength in male broilers. PLoS One, 2020, 15(12): e0243007 (doi: 10.1371/journal.pone.0243007).
- Muir W.I., Akter Y., Bruerton K., Groves P.J. The role of hen body weight and diet nutrient density in an extended laying cycle. Poultry Science, 2023, 102(2): 102338 (doi: 10.1016/j.psj.2022.102338).
- Wang H., Gao W., Huang L., Shen J.J., Liu Y., Mo C.H., Yang L., Zhu Y.W. Mineral requirements in ducks: an update. Poultry Science, 2020, 99(12): 6764-6773 (doi: 10.1016/j.psj.2020.09.041).
- Araújo C.S.S., Hermes R.G., Bittencourt L.C., Silva C.C., Araújo L.F., Granghelli C.A., Pelissari P.H., Roque F.A., Leite B.G.S. Different dietary trace mineral sources for broiler breeders and their progenies. Poultry Science, 2019, 98(10): 4716-4721 (doi: 10.3382/ps/pez182).
- De Matos R. Calcium metabolism in birds. Veterinary Clinics of North America: Exotic Animal Practice, 2008, 11(1): 59-82 (doi: 10.1016/j.cvex.2007.09.005).
- Baird G.S. Ionized calcium. Clinica Chimica Acta, 2011, 412(9-10): 696-701 (doi: 10.1016/j.cca.2011.01.004).
- Wu S., Zhang F., Tang Y. A novel calcium-ion battery based on dual-carbon configuration with high working voltage and long cycling life. Adv. Sci., 2018, 5(8): 1701082 (doi: 10.1002/advs.201701082).
- Zhang J., Ji Y., Jiang S., Shi M., Cai W., Miron R.J., Zhang Y. Calcium-Collagen Coupling is Vital for Biomineralization Schedule. Adv. Sci., 2021, 8(15): e2100363 (doi: 10.1002/advs.202100363).
- Stehle R., Iorga B., Pfitzer G. Calcium regulation of troponin and its role in the dynamics of contraction and relaxation. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2007, 292(3): R1125-R1128 (doi: 10.1152/ajpregu.00841.2006).
- Kavalali E.T. The mechanisms and functions of spontaneous neurotransmitter release. Nat. Rev. Neurosci., 2015, 16(1): 5-16 (doi: 10.1038/nrn3875).
- Sundararaman S.S., van der Vorst E.P.C. Calcium-Sensing Receptor (CaSR), its impact on in-flammation and the consequences on cardiovascular health. Int. J. Mol. Sci., 2021, 22(5): 2478 (doi: 10.3390/ijms22052478).
- Klein G.L., Castro S.M., Garofalo R.P. The calcium-sensing receptor as a mediator of inflamma-tion. Seminars in Cell & Developmental Biology, 2016, 49: 52-56 (doi: 10.1016/j.semcdb.2015.08.006).
- Umerah C.O., Momodu II. Anticoagulation. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island, FL, 2023. Режим доступа: https://pubmed.ncbi.nlm.nih.gov/32809486/. Без даты.
- Weisel J.W. Fibrinogen and fibrin. In: Advances in protein chemistry. Academic Press, 2005, vol. 70: 247-299 (doi: 10.1016/S0065-3233(05)70008-5).
- Hogan P.G. Calcium-NFAT transcriptional signalling in T cell activation and T cell exhaustion. Cell Calcium, 2017, 63: 66-69 (doi: 10.1016/j.ceca.2017.01.014).
- Baba Y. Store-operated calcium entry into B cells regulates autoimmune inflammation. Yakugaku Zasshi, 2016, 136(3): 473-478 (doi: 10.1248/yakushi.15-00246-3).
- Okuyama K., Shiwaku Y., Hamai R., Mizoguchi T., Tsuchiya K., Takahashi T., Suzuki O. Dif-ferentiation of committed osteoblast progenitors by octacalcium phosphate compared to calcium-deficient hydroxyapatite in Lepr-cre/Tomato mouse tibia. Acta Biomaterialiaialia, 2022, 142: 332-344 (doi: 10.1016/j.actbio.2022.02.016).
- Ganjigohari S., Ziaei N., Ramzani Ghara A., Tasharrofi S. Effects of nanocalcium carbonate on egg production performance and plasma calcium of laying hens. J. Anim. Physiol. Anim. Nutr., 2018, 102(1): e225-e232 (doi: 10.1111/jpn.12731).
- Rodríguez-Navarro A.B., Marie P., Nys Y., Hincke M.T., Gautron J. Amorphous calcium car-bonate controls avian eggshell mineralization: a new paradigm for understanding rapid eggshell calcification. Journal of Structural Biology, 2015, 190(3): 291-303 (doi: 10.1016/j.jsb.2015.04.014).
- Ali N.S.M., Salleh A.B., Rahman R.N.Z.R.A., Leow T.C., Ali M.S.M. Calcium-induced activity and folding of a repeat in toxin lipase from antarctic pseudomonas fluorescens strain AMS8. Toxins, 2020, 12(1): 27 (doi: 10.3390/toxins12010027).
- Eijsink V.G., Matthews B.W., Vriend G. The role of calcium ions in the stability and instability of a thermolysin-like protease. Protein Science, 2011, 20(8): 1346-1355 (doi: 10.1002/pro.670).
- Satin L.S. Localized calcium influx in pancreatic beta-cells: its significance for Ca2+-dependent insulin secretion from the islets of langerhans. Endocrine, 2000, 13(3): 251-262 (doi: 10.1385/ENDO:13:3:251).
- Quarles L.D. Extracellular calcium-sensing receptors in the parathyroid gland, kidney, and other tissues. Current Opinion in Nephrology and Hypertension, 2003, 12(4): 349-355 (doi: 10.1097/00041552-200307000-00002).
- Hardie R.C. Photosensitive TRPs. In: Mammalian transient receptor potential (TRP) cation chan-nels. Handbook of experimental pharmacology, vol. 223 /B. Nilius, V. Flockerz (eds.). Springer, Cham, 2014, 223: 795-826 (doi: 10.1007/978-3-319-05161-1).
- Riley P.A., Stratford M.R. Oxidative calcium release from catechol. Bioorganic & Medicinal Chemistry Letters, 2015, 25(7): 1453-1454 (doi: 10.1016/j.bmcl.2015.02.036).
- Finkelstein M., Etkovitz N., Breitbart H. Ca2+ signaling in mammalian spermatozoa. Molecular and Cellular Endocrinology, 2020, 516: 110953 (doi: 10.1016/j.mce.2020.110953).
- Goll D.E., Thompson V.F., Li H., Wei W., Cong J. The calpain system. Physiological Reviews, 2003, 83(3): 731-801 (doi: 10.1152/physrev.00029.2002).
- Bronner F. Mechanisms of intestinal calcium absorption. J. Cell. Biochem., 2003, 88(2): 387-393 (doi: 10.1002/jcb.10330).
- Christakos S. Mechanism of action of 1,25-dihydroxyvitamin D3 on intestinal calcium absorption. Reviews in Endocrine and Metabolic Disorders, 2012, 13(1): 39-44 (doi: 10.1007/s11154-011-9197-x).
- Alexander R.T., Dimke H. Effects of parathyroid hormone on renal tubular calcium and phos-phate handling. Acta Physiol., 2023, 238(1): e13959 (doi: 10.1111/apha.13959).
- Hirata Y., Funato Y., Takano Y., Miki H. Mg2+-dependent interactions of ATP with the cysta-thionine-β-synthase (CBS) domains of a magnesium transporter. Journal of Biological Chemistry, 2014, 289(21): 14731-14739 (doi: 10.1074/jbc.M114.551176).
- Chen Y.S., Kozlov G., Fakih R., Yang M., Zhang Z., Kovrigin E.L., Gehring K. Mg2+-ATP sensing in CNNM, a putative magnesium transporter. Structure, 2020, 28(3): 324-335.e4 (doi: 10.1016/j.str.2019.11.016).
- Kronbauer M., Metz V.G., Roversi K., Milanesi L.H., Rubert Rossato D., da Silva Barcelos R.C., Burger M.E. Influence of magnesium supplementation and L-type calcium channel blocker on haloperidol-induced movement disturbances. Behavioural Brain Researchearch, 2019, 374: 112119 (doi: 10.1016/j.bbr.2019.112119).
- Houillier P. Calcium-sensing in the kidney. Current Opinion in Nephrology and Hypertension, 2013, 22(5): 566-571 (doi: 10.1097/MNH.0b013e328363ff5f).
- Lu S.-Y., Huang Z.-M., Huang W.-K., Liu X.-Y., Chen Y.-Y., Shi T., Zhang J. How calcium inhibits the magnesium-dependent kinase gsk3β: a molecular simulation study. Proteins, 2013, 81(5): 740-753 (doi: 10.1002/prot.24221).
- Yang L.P., Dong Y.P., Luo W.T., Zhu T, Li Q.W., Zhang L.J., Kong J, Yuan Z.W., Zhao Q. Calbindin-D28K mediates 25(OH)D3/VDR-regulated bone formation through MMP13 and DMP1. J. Cell. Biochem., 2018, 119(10): 8035-8047 (doi: 10.1002/jcb.26722).
- Sooy K., Kohut J., Christakos S. The role of calbindin and 1,25dihydroxyvitamin D3 in the kidney. Current Opinion in Nephrology and Hypertension, 2000, 9(4): 341-347 (doi: 10.1097/00041552-200007000-00004).
- Ryan J.W., Reinke D, Kogawa M, Turner A.G., Atkins G.J., Anderson P.H., Morris H.A. Novel targets of vitamin D activity in bone: action of the vitamin D receptor in osteoblasts, osteocytes and osteoclasts. Current Drug Targets, 2013, 14(14): 1683-1688 (doi: 10.2174/138945011131400212).
- Kiefer-Hecker B., Kienzle E., Dobenecker B. Effects of low phosphorus supply on the availability of calcium and phosphorus, and musculoskeletal development of growing dogs of two different breeds. J. Anim. Physiol. Anim. Nutr., 2018, 102(3): 789-798 (doi: 10.1111/jpn.12868).
- Goyal R., Jialal I. Hyperphosphatemia. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island, FL, 2023. Режим доступа: https://www.ncbi.nlm.nih.gov/books/NBK551586/. Без даты.
- Kazama J.J., Wakasugi M. Parathyroid hormone and bone in dialysis patients. Ther Apher Dial, 2018, 22(3): 229-235 (doi: 10.1111/1744-9987.12678).
- Portales-Castillo I., Simic P. PTH, FGF-23, Klotho and Vitamin D as regulators of calcium and phosphorus: Genetics, epigenetics and beyond. Front. Endocrinol., 2022, 13: 992666 (doi: 10.3389/fendo.2022.992666).
- Beulens J.W., Booth S.L., van den Heuvel E.G., Stoecklin E., Baka A., Vermeer C. The role of menaquinones (vitamin K₂) in human health. British Journal of Nutrition, 2013, 110(8): 1357-1368 (doi: 10.1017/S0007114513001013).
- Li W., Zhang S., Liu J., Liu Y., Liang Q. Vitamin K2 stimulates MC3T3‑E1 osteoblast differen-tiation and mineralization through autophagy induction. Molecular Medicine Report, 2019, 19(5): 3676-3684 (doi: 10.3892/mmr.2019.10040).
- Ma M.L., Ma Z.J., He Y.L., Sun H, Yang B, Ruan B.J., Zhan W.D., Li S.X., Dong H, Wang Y.X. Efficacy of vitamin K2 in the prevention and treatment of postmenopausal osteopo-rosis: A systematic review and meta-analysis of randomized controlled trials. Front. Public Health, 2022, 10: 979649 (doi: 10.3389/fpubh.2022.979649).
- Ma H., Zhang B.L., Liu B.Y., Shi S., Gao D.Y., Zhang T.C., Shi H.J., Li Z., Shum W.W. Vitamin K2-dependent GGCX and MGP are required for homeostatic calcium regulation of sperm maturation. iScience, 2019, 14: 210-225 (doi: 10.1016/j.isci.2019.03.030).
- Karieb S., Fox S.W. Zinc modifies the effect of phyto-oestrogens on osteoblast and osteoclast differentiation in vitro. British Journal of Nutrition, 2012, 108(10): 1736-1745 (doi: 10.1017/S0007114511007355).
- Park K.H., Park B., Yoon D.S., Kwon S.-H., Shin D.M., Lee J.W., Lee H.G., Shim J.-H., Park J.H., Lee J.M. Zinc inhibits osteoclast differentiation by suppression of Ca2+-calcineurin-NFATc1 signaling pathway. Cell Commun. Signal., 2013, 11: 74 (doi: 10.1186/1478-811X-11-74).
- You L., Chen L., Pan L., Gu W.S., Chen J.Y. Zinc finger protein 467 regulates Wnt signaling by modulating the expression of sclerostin in adipose derived stem cells. Biochemical and Biophysical Research Communications, 2015, 456(2): 598-604 (doi: 10.1016/j.bbrc.2014.11.120).
- Yang X., Chen S., Zhang S., Shi S., Zong R., Gao Y., Guan B., Gamper N., Gao H. Intracellular zinc protects Kv7 K+ channels from Ca2+/calmodulin-mediated inhibition. Journal of Biological Chemistry, 2023, 299(2): 102819, (doi: 10.1016/j.jbc.2022.102819).
- Heng M.K., Song M.K., Heng M.C. Reciprocity between tissue calmodulin and cAMP levels: modulation by excess zinc. British Journal of Dermatology, 1993, 129(3): 280-285 (doi: 10.1111/j.1365-2133.1993.tb11847.x).
- Leroy C., Manen D., Rizzoli R., Lombès M., Silve C. Functional importance of Myc-associated zinc finger protein for the human parathyroid hormone (PTH)/PTH-related peptide receptor-1 P2 promoter constitutive activity. Journal of Molecular Endocrinology, 2004, 32(1): 99-113 (doi: 10.1677/jme.0.0320099).
- Minagawa M., Watanabe T., Kohno Y., Mochizuki H., Hendy G.N., Goltzman D., White J.H., Yasuda T. Analysis of the P3 promoter of the human parathyroid hormone (PTH)/PTH-related peptide receptor gene in pseudohypoparathyroidism type 1b. The Journal of Clinical Endocrinology & Metabolism, 2001, 86(3): 1394-1397 (doi: 10.1210/jcem.86.3.7364).
- Hegsted M., Keenan M.J., Siver F., Wozniak P. Effect of boron on vitamin D deficient rats. Biological Trace Element Research, 1991, 28(3): 243-255 (doi: 10.1007/BF02990471).
- Dupre J.N., Keenan M.J., Hegsted M, Brudevold A.M. Effects of dietary boron in rats fed a vitamin D-deficient diet. Environmental Health Perspectives, 1994, 102: 55-58 (doi: 10.1289/ehp.94102s755).
- Capati M.L.F., Nakazono A., Igawa K., Ookubo K., Yamamoto Y., Yanagiguchi K., Kubo S., Yamada S., Hayashi Y. Boron accelerates cultured osteoblastic cell activity through calcium flux. Biological Trace Element Research, 2016, 174(2): 300-308 (doi: 10.1007/s12011-016-0719-y).
- Scorei I.D., Scorei R.I. Calcium fructoborate helps control inflammation associated with dimin-ished bone health. Biological Trace Element Research, 2013, 155(3): 315-321 (doi: 10.1007/s12011-013-9800-y).
- Liu A.C., Heinrichs B.S., Leach R.M. Jr. Influence of manganese deficiency on the characteristics of proteoglycans of avian epiphyseal growth plate cartilage. Poultry Science, 1994, 73(5): 663-669 (doi: 10.3382/ps.0730663).
- Mukhopadhyay S., Bachert C., Smith D.R., Linstedt A.D. Manganese-induced trafficking and turnover of the cis-Golgi glycoprotein GPP130. Molecular Biology of the Cell, 2010, 21(7): 1282-1292 (doi: 10.1091/mbc.e09-11-0985).
- Vásquez-Procopio J., Osorio B., Cortés-Martínez L., Hernández-Hernández F., Medina-Contre-ras O., Ríos-Castro E., Comjean A., Li F., Hu Y., Mohr S., Perrimon N., Missirlis F. Intestinal response to dietary manganese depletion in Drosophila. Metallomics, 2020, 12(2): 218-240 (doi: 10.1039/c9mt00218a).
- Fukushi J.-i., Inatani M., Yamaguchi Y., Stallcup W.B. Expression of NG2 proteoglycan during endochondral and intramembranous ossification. Dev. Dyn., 2003, 228(1): 143-148 (doi: 10.1002/dvdy.10359).
- Dupuis Y., Porembska Z., Tardivel S., Fournier A., Fournier P. Intestinal transfer of manganese: resemblance to and competition with calcium. Reprod. Nutr. Dev., 1992, 32(5-6): 453-460 (doi: 10.1051/rnd:19920505).
- del Carmen Toca M., Fernández A., Orsi M., Tabacco O., Vinderola G. Lactose intolerance: myths and facts. An update. Arch. Argent. Pediatr., 2022, 120(1): 59-66 (doi: 10.5546/aap.2022.eng.59).
- Burgos-Rubio C.N., Okos M.R., Wankat P.C. Kinetic study of the conversion of different sub-strates to lactic acid using Lactobacillus bulgaricus. Biotechnol. Progress, 2000, 16(3): 305-314 (doi: 10.1021/bp000022p).
- Alexandre V., Even P.C., Larue-Achagiotis C., Blouin J.M., Blachier F., Benamouzig R., Tomé D., Davila A.M. Lactose malabsorption and colonic fermentations alter host metabolism in rats. British Journal of Nutrition, 2013, 110(4): 625-631 (doi: 10.1017/S0007114512005557).
- Canfora E.E., Jocken J.W., Blaak E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol., 2015, 11(10): 577-591 (doi: 10.1038/nrendo.2015.128).
- Ricard-Blum S. The collagen family. Cold Spring Harbor Perspectives in Biology, 2011, 3(1): a004978 (doi: 10.1101/cshperspect.a004978).
- Yu L, Wei M. Biomineralization of collagen-based materials for hard tissue repair. Int. J. Mol. Sci., 2021, 22(2): 944 (doi: 10.3390/ijms22020944).
- Stock S.R. The mineral-collagen interface in bone. Calcified Tissue International, 2015, 97(3): 262-280 (doi: 10.1007/s00223-015-9984-6).
- Kim J.-M., Lin C, Stavre Z, Greenblatt M.B., Shim J.-H. Osteoblast-osteoclast communication and bone homeostasis. Cells, 2020, 9(9): 2073 (doi: 10.3390/cells9092073).
- Udagawa N., Koide M., Nakamura M., Nakamichi Y., Yamashita T., Uehara S., Kobayashi Y., Furuya Y., Yasuda H., Fukuda C., Tsuda E. Osteoclast differentiation by RANKL and OPG signaling pathways. Journal of Bone and Mineral Metabolism, 2021, 39(1): 19-26 (doi: 10.1007/s00774-020-01162-6).
- Chappard D., Bizot P., Mabilleau G., Hubert L. Aluminum and bone: review of new clinical circumstances associated with Al3+ deposition in the calcified matrix of bone. Morphologie, 2016, 100(329): 95-105 (doi: 10.1016/j.morpho.2015.12.001).
- Sun X., Cao Z., Zhang Q., Li M., Han L., Li Y. Aluminum trichloride inhibits osteoblast min-eralization via TGF-β1/Smad signaling pathway. Chemico-Biological Interactions, 2016, 244: 9-15 (doi: 10.1016/j.cbi.2015.11.027).
- Spencer H., Kramer L. Osteoporosis: calcium, fluoride, and aluminum interactions. Journal of the American College of Nutrition, 1985, 4(1): 121-128 (doi: 10.1080/07315724.1985.10720071).
- Morrissey J., Rothstein M., Mayor G., Slatopolsky E. Suppression of parathyroid hormone secretion by aluminum. Kidney International, 1983, 23(5): 699-704 (doi: 10.1038/ki.1983.81).
- Moon J. The role of vitamin D in toxic metal absorption: a review. Journal of the American College of Nutrition, 1994, 13(6): 559-564 (doi: 10.1080/07315724.1994.10718447).
- Yang F., Pei R., Zhang Z., Liao J., Yu W., Qiao N., Han Q., Li Y., Hu L., Guo J., Pan J., Tang Z. Copper induces oxidative stress and apoptosis through mitochondria-mediated pathway in chicken hepatocytes. Toxicol in Vitro, 2019, 54: 310-316 (doi: 10.1016/j.tiv.2018.10.017).
- Yang F., Liao J., Yu W., Pei R., Qiao N., Han Q., Hu L., Li Y., Guo J., Pan J., Tang Z. Copper induces oxidative stress with triggered NF-κB pathway leading to inflammatory responses in im-mune organs of chicken. Ecotoxicology and Environmental Safety, 2020, 200: 110715 (doi: 10.1016/j.ecoenv.2020.110715).
- Zofkova I., Davis M., Blahos J. Trace elements have beneficial, as well as detrimental effects on bone homeostasis. Physiol. Res., 2017, 66(3): 391-402 (doi: 10.33549/physiolres.933454).
- Lutz W., Burritt M.F., Nixon D.E., Kao P.C., Kumar R. Zinc increases the activity of vitamin D-dependent promoters in osteoblasts. Biochemical and Biophysical Research Communications, 2000, 271(1): 1-7 (doi: 10.1006/bbrc.2000.2570).
- Arnesano F., Banci L., Bertini I., Fantoni A., Tenori L., Viezzoli M.S. Structural interplay be-tween calcium (II) and copper (II) binding to S100A13 protein. Angewandte Chemie International Edition, 2005, 44(39): 6341-6344 (doi: 10.1002/anie.200500540).
- Lertsuwan K., Wongdee K., Teerapornpuntakit J., Charoenphandhu N. Intestinal calcium transport and its regulation in thalassemia: interaction between calcium and iron metabolism. J. Physiol. Sci., 2018, 68(3): 221-232 (doi: 10.1007/s12576-018-0600-1).
- González-Domínguez Á., Visiedo-García F.M., Domínguez-Riscart J., González-Domínguez R., Mateos R.M., Lechuga-Sancho A.M. Iron metabolism in obesity and metabolic syndrome. Int. J. Mol. Sci., 2020, 21(15): 5529 (doi: 10.3390/ijms21155529).
- Blumenthal N.C., Cosma V., Skyler D., LeGeros J., Walters M. The effect of cadmium on the formation and properties of hydroxyapatite in vitro and its relation to cadmium toxicity in the skeletal system. Calcified Tissue International, 1995, 56(4): 316-322 (doi: 10.1007/BF00318053).
- Gong Z.-G., Zhao Y., Wang Z.-Y., Fan R.-F., Liu Z.-P., Wang L. Epigenetic regulator BRD4 is involved in cadmium-induced acute kidney injury via contributing to lysosomal dysfunction, autophagy blockade and oxidative stress. Journal of Hazardous Materials, 2022, 423(Pt A): 127110, (doi: 10.1016/j.jhazmat.2021.127110).
- Rodriguez M, Munoz-Castaneda J.R., Almaden Y. Therapeutic use of calcitriol. Current Vascular Pharmacology, 2014, 12(2): 294-299 (doi: 10.2174/15701611113119990021).
- Ou Y.-C., Li J.-R., Wu C.-C., Yu T.-M., Chen W.-Y., Liao S.-L., Kuan Y.-H., Chen Y.-F., Chen C.-J. Cadmium induces the expression of Interleukin-6 through Heme Oxygenase-1 in HK-2 cells and Sprague-Dawley rats. Food and Chemical Toxicology, 2022, 161: 112846 (doi: 10.1016/j.fct.2022.112846).
- Kayama F., Yoshida T., Elwell M.R., Luster M.I. Role of tumor necrosis factor-alpha in cad-mium-induced hepatotoxicity. Toxicology and Applied Pharmacology, 1995, 131(2): 224-234 (doi: 10.1006/taap.1995.1065).
- Yokota K., Sato K., Miyazaki T., Aizaki Y., Tanaka S., Sekikawa M., Kozu N., Kadono Y., Oda H., Mimura T. Characterization and function of tumor necrosis factor and interleukin-6-induced osteoclasts in rheumatoid arthritis. Arthritis Rheumatol., 2021, 73(7): 1145-1154 (doi: 10.1002/art.41666).
- Liu J., Zhang L., Feng L., Xu M., Gao Y., Zhou P., Yu Z., Zhu B., An Y., Zhang H. Association between single nucleotide polymorphism (rs4252424) in TRPV5 calcium channel gene and lead poisoning in Chinese workers. Mol. Genet. Genomic Med., 2019, 7(3): e562 (doi: 10.1002/mgg3.562).
- Nagata K., Huang C.-S., Song J.-H., Narahashi T. Lead modulation of the neuronal nicotinic acetylcholine receptor in PC12 cells. Brain Research, 1997, 754(1-2): 21-27 (doi: 10.1016/s0006-8993(97)00037-1).
- Shi J., Xue W., Zhao W.-j., Li K.-x. Pharmacokinetics and dopamine/acetylcholine releasing effects of ginsenoside Re in hippocampus and mPFC of freely moving rats. Acta Pharmacol. Sin., 2013, 34(2): 214-220 (doi: 10.1038/aps.2012.147).
- Kasten-Jolly J., Lawrence D.A. The cationic (calcium and lead) and enzyme conundrum. Journal of Toxicology and Environmental Health, Part B, 2018, 21(6-8): 400-413 (doi: 10.1080/10937404.2019.1592728).
- Liu S., Zhou H., Liu H., Ji H., Fei W., Luo E. Fluorine-contained hydroxyapatite suppresses bone resorption through inhibiting osteoclasts differentiation and function in vitro and in vivo. Cell Prolif, 2019, 52(3): e12613 (doi: 10.1111/cpr.12613).
- Grigorenko V.K., Bachinskiĭ P.P., Grebennikova V.F. Effect of fluorine on enzyme activity in the small intestine mucosa during absorption of sodium, potassium, monosaccharides and amino acids. Ukr. Biokhim. Zh., 1987, 59(3): 23-8.
- Irurre J. Jr, Casas J., Ramos I., Messeguer A. Inhibition of rat liver microsomal lipid peroxidation elicited by 2,2-dimethylchromenes and chromans containing fluorinated moieties resistant to cy-tochrome P-450 metabolism. Bioorganic & Medicinal Chemistry, 1993, 1(3): 219-225 (doi: 10.1016/s0968-0896(00)82124-0).
- Ohyama Y., Yamasaki T. Eight cytochrome P450s catalyze vitamin D metabolism. Front. Biosci., 2004, 1(9): 3007-3018 (doi: 10.2741/1455).
- Tuason M.M., Arocena J.M. Calcium oxalate biomineralization by Piloderma fallax in response to various levels of calcium and phosphorus. Applied and Environmental Microbiology, 2009, 75(22): 7079-7085 (doi: 10.1128/AEM.00325-09).
- Worcester E.M. Urinary calcium oxalate crystal growth inhibitors. Journal of the American Society of Nephrology, 1994, S46- S53 (doi: 10.1681/ASN.V55s46).
- Bertinato J., Griffin P., Huliganga E., Matias F.M.G., Dam D., Brooks S.P.J. Calcium exacer-bates the inhibitory effects of phytic acid on zinc bioavailability in rats. Journal of Trace Elements in Medicine and Biology, 2020, 62: 126643 (doi: 10.1016/j.jtemb.2020.126643).
- Milman N.T. A review of nutrients and compounds, which promote or inhibit intestinal iron absorption: making a platform for dietary measures that can reduce iron uptake in patients with genetic haemochromatosis. Journal of Nutrition and Metabolism, 2020, 2020: 7373498 (doi: 10.1155/2020/7373498).
- Cloutier M.M., Guernsey L., Sha'afi R.I. Tannin inhibits cAMP pathways in bovine airway epi-thelium. American Journal of Respiratory Cell and Molecular Biology, 1994, 10(1): 106-112 (doi: 10.1165/ajrcmb.10.1.8292375).
- Ittah Y. Titration of tannin via alkaline phosphatase activity. Analytical Biochemistry, 1991, 192(2): 277-280 (doi: 10.1016/0003-2697(91)90536-3).
- Wang X., Wang M., Cui X., Li Z., Guo S., Gao F., Ma M., Wang Z. Antiosteoporosis effect of geraniin on ovariectomy-induced osteoporosis in experimental rats. J. Biochem. Mol. Toxicol., 2021, 35(6): 1-8 (doi: 10.1002/jbt.22774).
- Yin J.-Y., Nie S.-P., Li J., Li C., Cui S.-W., Xie M.-Y. Mechanism of interactions between calcium and viscous polysaccharide from the seeds of Plantago asiatica L. J. Agric. Food Chem., 2012, 60(32): 7981-7987 (doi: 10.1021/jf302052t).
- Оберлис Д., Харланд Б.Ф., Скальный А.В. Биологическая роль макро- и микроэлементов у человека и животных. /Под ред. А.В. Скального. СПб, 2008.
- Olgun O, Aygun A. Nutritional factors affecting the breaking strength of bone in laying hens. World's Poultry Science Journal, 2016, 72(4): 821-832 (doi: 10.1017/S0043933916000696).
- Zhao S.C., Teng X.Q., Xu D.L., Chi X., Ge M., Xu S.W. Influences of low level of dietary calcium on bone characters in laying hens. Poultry Science, 2020, 99(12): 7084-7091 (doi: 10.1016/j.psj.2020.08.057).
- Molnar A., Maertens L., Ampe B., Buyse J., Zoons J., Delezie E. Supplementation of fine and coarse limestone in different ratios in a split feeding system: Effects on performance, egg quality, and bone strength in old laying hens. Poultry Science, 2017, 96(6): 1659-1671 (doi: 10.3382/ps/pew424).
- Peebles E.D. In ovo applications in poultry: a review. Poultry Science, 2018, 97(7): 2322-2338 (doi: 10.3382/ps/pey081).
- Matuszewski A., Łukasiewicz M., Niemiec J., Kamaszewski M., Jaworski S., Domino M., Jasiński T., Chwalibog A., Sawosz E. Calcium carbonate nanoparticles-toxicity and effect of in ovo inoculation on chicken embryo development, broiler performance and bone status. Animals, 2021, 11(4): 932 (doi: 10.3390/ani11040932).
- Olgun O., Yıldız A.Ö., Cufadar Y. The effects of eggshell and oyster shell supplemental as calcium sources on performance, eggshell quality and mineral excretion in laying hens. Indian Journal of Animal Research, 2015, 49(2): 205-209 (doi: 10.5958/0976-0555.2015.00056.4).
- Barshan S., Khalaji S., Hedayati M., Yari M. Influence of bone meal degelatinisation and calcium source and particle size on broiler performance, bone characteristics and digestive and plasma alkaline phosphatase activity. British Poultry Science, 2019, 60(3): 297-308 (doi: 10.1080/00071668.2019.1587151).
- Zhang F., Adeola O. True ileal digestibility of calcium in limestone and dicalcium phosphate are additive in diets of broiler chickens. Poultry Science, 2018, 97(12): 4290-4296 (doi: 10.3382/ps/pey300).
- Стрелков Н.С., Коныгин Г.Н., Рыбин Д.С., Поздеев В.В., Кирьянов Н.А., Яковенко О.В., Максимов П.Н., Елсуков Е.П., Ефремов Ю.Я., Шарафутдинова Д.Р., Петухов В.Ю., Гу-маров Г.Г. Нанодисперсная аморфная форма кальция глюконата: биохимическая совме-стимость и терапевтическая эффективность при лечении заболеваний, связанных с обме-ном кальция в организме. Альманах клинической медицины, 2008, 17-2: 366-370.
- Астраханцев А.А., Косарев К.В., Астраханцева Т.Н. Биохимические показатели крови кур при включении в рационы "Кальций МАКГ", "Протикал ТРИ Плюс" и глюконата кальция. Мат. Межд. науч.-практ. конф. «Научно обоснованные технологии интенсификации сельско-хозяйственного производства». Ижевск, 2017, т. 3: 3-5.
- Md Ramli S.H., Wong T.W., Naharudin I., Bose A. Coatless alginate pellets as sustained-release drug carrier for inflammatory bowel disease treatment. Carbohydrate Polymers, 2016, 152: 370-381 (doi: 10.1016/j.carbpol.2016.07.021).
- Микуленок В.Г., Жалнеровская А.В., Кахнович А.В. Полнорационные комбикорма в условиях промышленного свиноводства. Витебск, 2018.
- Izat A.L., Adams M.H., Cabel M.C., Colberg M., Reiber M.A., Skinner J.T., Waldroup P.W. Effects of formic acid or calcium formate in feed on performance and microbiological character-istics of broilers. Poultry Science, 1990, 69(11): 1876-1882 (doi: 10.3382/ps.0691876).
- Song M., Jiao H., Zhao J., Wang X., Li H., Wang P., Ma B., Sun S., Lin H. Dietary supple-mentation of calcium propionate and calcium butyrate improves eggshell quality of laying hens in the late phase of production. The Journal of Poultry Science, 2022, 59(1): 64-74 (doi: 10.2141/jpsa.0200127).
- Alam S., Shah H.U., Khan N.A., Zeb A., Shah A.S., Magan N. Water availability and calcium propionate affect fungal population and aflatoxins production in broiler finisher feed during storage. Food Additives & Contaminants: Part A, 2014, 31(11): 1896-1903 (doi: 10.1080/19440049.2014.963699).
- Hosseini E., Grootaert C., Verstraete W., Van de Wiele T. Propionate as a health-promoting microbial metabolite in the human gut. Nutrition Reviews, 2011, 69(5): 245-258 (doi: 10.1111/j.1753-4887.2011.00388.x).
- Damron B.L., Flunker L.K. Calcium supplementation of hen drinking water. Poultry Science, 1995, 74(5): 784-787 (doi: 10.3382/ps.0740784).
- Romijn J.A., Chinkes D.L., Schwarz J.M., Wolfe R.R. Lactate-pyruvate interconversion in blood: implications for in vivo tracer studies. American Journal of Physiology-Endocrinology and Metabo-lism, 1994, 266(3 Pt 1): E334-E340 (doi: 10.1152/ajpendo.1994.266.3.E334).
- Кадырова Р.Г., Кабиров Г.Ф., Муллахметов Р.Р. Синтез магниевых и кальциевых солей -аминокислот. Ученые записки Казанской государственной академии ветеринарной меди-цины им. Н.Э. Баумана, 2013, 216: 157-164.
- Henry M.H., Pesti G.M. An investigation of calcium citrate-malate as a calcium source for young broiler chicks. Poultry Science, 2002, 81(8): 1149-1155 (doi: 10.1093/ps/81.8.1149).
- Elmore A.R. Final report of the safety assessment of L-ascorbic acid, calcium ascorbate, magnesium ascorbate, magnesium ascorbyl phosphate, sodium ascorbate, and sodium ascorbyl phosphate as used in cosmetics. International Journal of Toxicology, 2005, 24: 51-111 (doi: 10.1080/10915810590953851).
- Rowe D.J., Ko S, Tom X.M., Silverstein S.J., Richards D.W. Enhanced production of mineral-ized nodules and collagenous proteins in vitro by calcium ascorbate supplemented with vitamin C metabolites. Journal of Periodontology, 1999, 70(9): 992-999 (doi: 10.1902/jop.1999.70.9.992).
- Cai J., Zhang Q., Wastney M.E., Weaver C.M. Calcium bioavailability and kinetics of calcium ascorbate and calcium acetate in rats. Experimental Biology and Medicine, 2004, 229(1): 40-45 (doi: 10.1177/153537020422900105).
- Weaver C.M., Martin B.R., Costa N.M., Saleeb F.Z., Huth P.J. Absorption of calcium fumarate salts is equivalent to other calcium salts when measured in the rat model. J. Agric. Food Chem., 2002, 50(17): 4974-4975 (doi: 10.1021/jf0200422).
- Fernández M., Rodríguez A., Fulco M., Soteras T., Mozgovoj M., Cap M. Effects of lactic, malic and fumaric acids on Salmonella spp. counts and on chicken meat quality and sensory character-istics. Journal of Food Science and Technology, 2021, 58(10): 3817-3824 (doi: 10.1007/s13197-020-04842-3).
- Холодилина Т.Н., Кондакова К.С., Курилкина М.Я., Ваншин В.В. Опыт использования мелкодисперсных кальций и магнийсодержащих добавок в кормлении цыплят-бройлеров. Вестник мясного скотоводства, 2013, 4(82): 95-99.
- Шатенштейн А.И. Теории кислот и оснований: история и современное состояние: учебник. М., 1949.
- Hartwell J., Gill A., Nimmo G.A., Wilkins M.B., Jenkins G.I., Nimmo H.G. Phosphoenolpy-ruvate carboxylase kinase is a novel protein kinase regulated at the level of expression. The Plant Journal, 1999, 20(3): 333-342.
- Calatroni M., Moroni G., Reggiani F., Ponticelli C. Renal sarcoidosis. Journal of Nephrology rol, 2023, 36(1): 5-15 (doi: 10.1007/s40620-022-01369-y).
- Feldman D. Vitamin D, parathyroid hormone, and calcium: a complex regulatory network. The American Journal of Medicine, 1999, 107(6): 637-639 (doi: 10.1016/s0002-9343(99)00283-1).
- Sakhaee K., Bhuket T., Adams-Huet B., Rao D.S. Meta-analysis of calcium bioavailability: a comparison of calcium citrate with calcium carbonate. Am. J. Ther., 1999, 6(6): 313-321 (doi: 10.1097/00045391-199911000-00005).
- Ковалевский В.В., Кислякова Е.М. Модифицированная форма кальция глюконата в ра-ционе кур-несушек. Достижения науки и техники АПК, 2013, 8: 43-45.
- Bao S.F., Windisch W., Kirchgessner M. Calcium bioavailability of different organic and inor-ganic dietary Ca sources (citrate, lactate, acetate, oyster-shell, eggshell, β-tri-Ca phosphate). Jour-nal of Animal Physiology and Animal Nutrition, 1997, 78(1-5): 154-160 (doi: 10.1111/j.1439-0396.1997.tb00866.x).
- Hanzlik R.P., Fowler S.C., Fisher D.H. Relative bioavailability of calcium from calcium formate, calcium citrate, and calcium carbonate. Journal of Pharmacology and Experimental Therapeutics, 2005, 313(3): 1217-1222 (doi: 10.1124/jpet.104.081893).
- Tsugawa N, Yamabe T, Takeuchi A, Kamao M, Nakagawa K, Nishijima K, Okano T. Intestinal absorption of calcium from calcium ascorbate in rats. Journal of Bone and Mineral Metabolism, 1999, 17(1): 30-36 (doi: 10.1007/s007740050060).
- Фисинин В.И., Егоров И.А., Драганов И.Ф. Ф63 Кормление сельскохозяйственной птицы. М., 2011.
- National Research Council. Nutrient requirements of poultry: Ninth revised edition. The National Academies Press, Washington, DC, 1994 (doi: 10.17226/2114).
- Leeson S., Summers J.D. Commercial poultry nutrition. Third Edition. Nottingham University Press, Nottingham, 2005.
- EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control). The European Union One Health 2019 Zoonoses Report. EFSA Journal, 2021, 19(2): 6406 (doi: 10.2903/j.efsa.2021.6406).
- Feeding standard of chicken. Agriculture Industry Standard (Recommended). Chinese Academy of Agri-cultural Science, 2004. Режим доступа: http://down.foodmate.net/standard/yulan.php?itemid=7410. Без даты.
- Георгиевский В.И., Анненков Б.Н., Самохин В.Т. Минеральное питание животных. М., 1985.
- Околелова Т.М. Кормление сельскохозяйственной птицы. М., 1990.
- Егоров И.А., Манукян В.А., Ленкова Т.Н., Егорова Т.А., Околелова Т.М., Андриа-нова Е.Н., Шевяков А.Н., Егорова Т.В., Байковская Е.Ю., Гогина Н.Н., Криворучко Л.И., Сысоева И.Г., Панин И.Г., Гречишников В.В., Панин А.И., Кустова С.В., Афанасьев В.А., Пономаренко Ю.А. Руководство по кормлению сельскохозяйственной птицы /Под ред. В.И. Фисинина, И.А. Егорова. М., 2019.