Каротиноиды в растительных пищевых системах

Бесплатный доступ

Каротиноиды пищевых продуктов растительного происхождения - растительные пигменты, обладающие биологической активностью и антиоксидантными свойствами, биодоступность которых зависит от механической и термической обработки и присутствия жиров. Из 40 каротиноидов, поступающих с пищей, главными являются каротины - β- и α-каротины, ликопин и ксантофиллы - лютеин, зеаксантин, β-криптоксантин. В статье представлены данные о содержании различных каротиноидов в свежих овощах, плодах и ягодах, опубликованные за последние годы. Свежие овощи содержат каротиноидов больше, чем плоды и ягоды, но обладают низкой биодоступностью. Основными источниками картиноидов среди овощей являются морковь, плодовые и салатно-шпинатные овощи. Морковь является источником каротинов (β-и α-каротин до 58,4 и 40,4 %, соответственно) с максимальным количеством в оранжевой моркови. Среди плодовых овощей томаты являются источником ликопина (86 %), тыква - β-каротина (50-80 %), сладкий и острый красные перцы - капсантина (70 %) и капсорубина (10 %), оранжевые перцы - зеаксантина (85 %). Методами генной инженерии созданы сорта томатов, содержащих ликопин преимущественно в транс-форме (96 %), а также с повышенным содержанием зеаксантина (50 %). Среди салатно-шпинатных овощей каротиноиды преобладают в шпинате, руколе и кресс-салате преимущественно в виде ксантофиллов. В большинстве плодов и ягод преобладает β-каротин независимо от их окраски, который может маскироваться антоцианами (боярышник, рябина, вишня, шиповник, черника) или хлорофиллом (зеленые яблоки). Наибольшее количество каротиноидов содержат облепиха, шиповник, морошка. Они могут служить источником β-каротина, а также ликопина (облепиха, шиповник), рубиксантина (шиповник).

Еще

Каротиноиды, биологическая активность, антиоксидантные свойства, плоды и овощи, пищевые продукты растительного происхождения

Короткий адрес: https://sciup.org/147236418

IDR: 147236418   |   DOI: 10.14529/food210407

Список литературы Каротиноиды в растительных пищевых системах

  • Дадали В.А., Каротиноиды: биодоступность, биотрансформация, антиоксидантные свойства / В.А. Дадали, В.А. Тутельян, Ю.В. Дадали, Л.В. Кравченко // Вопросы питания. – 2010. – Т. 79, № 2. – С. 4–18.
  • Дейнека, В.И. Каротиноиды: строение, биологические функции и перспективы применения / В.И. Дейнеко, А.А. Шапошников, Л.А. Дейнеко и др. // Научные ведомости. – 2008. – № 6. – С. 19–25.
  • Saini, R. K. Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavail-ability and biological activities / R. K. Saini, Sh. H. Nile, S. Park // Food Research International. – 2015. – № 76. – Р. 735–750. http://dx.doi.org/10.1016/j.foodres.2015.07.047
  • Fernández-García, E. Carotenoids bioavailability from foods: From plant pigments to efficient biological activities / E. Fernández-García, I. Carvajal-Lérida, M.l Jarén-Galán, Ju. Garrido-Fernández, A. Pérez-Gálvez, D. Hornero-Méndez // Food Research International. – 2012. – № 46. – Р. 438–450. DOI: 10.1016/j.foodres.2011.06.007
  • Britton, G. Carotenoids in food. / G. Britton, F. Khachik // Carotenoids. Nutrition and health. – 2009. – V. 5. – Р. 45–66.
  • Завьялова, А.Н. Физиологическая роль природных каротиноидов / А.Н. Завьялова, А.В. Суржик // Вопросы современной педиатрии. – 2008. – Т. 7, № 6. – С. 145–149.
  • Кричковская, Л.В. Природные антиоксиданты (биотехнологические, биологические и медицинские аспекты): монография / Л.В. Кричковская, Г.В. Донченко, С.И. Чернышов и др. – Харьков: ОАО «Модель Вселенной», 2001. – 376 с.
  • Дадали, В.А. Каротиноиды. Биологическая активность / В.А. Дадали, В.А. Тутельян, Ю.В. Дадали, Л.В. Кравченко // Вопросы питания, 2011. – Т. 80, № 4. – С. 4–17.
  • Hassan, N.M. Carotenoids of Capsicum fruits: pigment profile and health-promoting functional attributes / N.M. Hassan, N.A. Yusof, A.F. Yahaya, N.N. Mohd Rozali, R. Othman // Antioxidants (Basel). – 2019. – № 8. – Р. 469. DOI: 10.3390/antiox8100469
  • Frede, K. Light quality-induced changes of carotenoid composition in pak choi Brassica rapa ssp. chinensis/ K. Fredea, M. Schreinera, S. Baldermanna // Journal of Photochemistry & Photobiolo-gy, B: Biology. – 2019. – № 193. – Р. 18–30. https://doi.org/10.1016/j.jphotobiol. 2019.02.001
  • Delgado-Pelayo, R. Chlorophyll and carotenoid pigments in the peel and flesh of commercial apple fruit varieties / R. Delgado-Pelayo, L. Gallardo-Guerrero, D. Hornero-Méndez // Food Research International. – 2014. – № 65. – Р. 272–281. http://dx.doi.org/10.1016/j.foodres.2014.03.025
  • Vargas-Murga, L. Fruits and vegetables in the Brazilian Household Budget Survey (2008–2009): carotenoid content and assessment of individual carotenoid intake / L. Vargas-Murgaa, V.V. de Rosso, A. Z. Mercadante, B. Olmedilla-Alonso // Journal of Food Composition and Analysis. – 2016. – № 50. – Р. 88–96. http://dx.doi.org/10.1016/j.jfca.2016.05.012
  • Marinova, D. HPLC determination of carotenoids in Bulgarian berries / D. Marinova, F. Ribarova // Journal of Food Composition and Analysis. – 2007. – № 20. – Р. 370–374. DOI: 10.1016/j.jfca.2006.09.007
  • Schulz, H. Carotenoid Bioavailability from the Food Matrix: Toward Efficient Extraction Procedures / H. Schulz // In book: Carotenoids: Nutrition, Analysis, and Technology Chapter: Carote-noid bioavailability from the food matrix: toward efficient extraction procedures. – 2016. – Р. 191–216. DOI: 10.1002/9781118622223.ch11
  • Поляков, Н.Э. Некоторые аспекты реакционной способности каротиноидов. Окисли-тельно-восстановительные процессы и комплексообразование / Н.Э. Поляков, Т.В. Лешина // Успехи химии, 2006. – Т. 75, № 12. – С. 1175–1192.
  • Gao, Yu. The effect of polarity of environment on the antioxidant activity of carotenoids / Yu. Gao, A.L. Focsan, L.D. Kispert // Chemical Physics Letters. – 2020 – № 761. – 138098. https://doi.org/10.1016/j.cplett.2020.138098
  • Zhang, Zh. Microstructure and bioaccessibility of different carotenoid species as affected by hot air drying: Study on carrot, sweet potato, yellow bell pepper and broccoli / Zh. Zhang, Qi. Wei, M. Nie, N. Jiang, Ch. Liu, Ch. Liu, D. Li, L. Xu // LWT – Food Science and Technology. – 2018. – № 96. – Р. 357–363. https://doi.org/10.1016/j.lwt.2018.05.061
  • Feng, L. Effect of particle size distribution on the carotenoids release, physicochemical prop-erties and 3D printing characteristics of carrot pulp / L. Feng, Ji. Wu, Ji. Song, D. Li, Zh. Zhang, Ya. Xu, R. Yang, Ch. Liu, M. Zhang // LWT – Food Science and Technology. – 2021. – № 139. – 110576. https://doi.org/10.1016/j.lwt.2020.110576
  • Yao, K. In vitro and in vivo study of the enhancement of carotenoid bioavailability in vegeta-bles using excipient nanoemulsions: Impact of lipid content / K. Yao, D. Ju. McClements, Ch. Yan, Jie Xiao, H. Liu, Zh. Chen, X. Hou, Yo. Cao, H. Xiao, X. Liu // Food Research International. – 2021. – № 141. – 110162. https://doi.org/10.1016/j.foodres.2021.110162
  • Lu, Yu. Fermentation of tomato juice improves in vitro bioaccessibility of lycopene / Yu. Lu, K. Mu, D. Ju. McClements, X. Liang, Xu. Liu, F. Liu // Journal of Functional Foods. – 2020. – № 71. – 104020. https://doi.org/10.1016/j.jff.2020.104020
  • Li, Q. Potential physicochemical basis of Mediterranean diet effect: Ability of emulsified ol-ive oil to increase carotenoid bioaccessibility in raw and cooked tomatoes / Q. Li, T. Li, Ch. Liu, Ju. Chen, R. Zhang, Z. Zhang, T. Dai, D. Ju. McClements // Food Research International. – 2016. –№ 89. – Р. 320–329. http://dx.doi.org/10.1016/j.foodres.2016.08.014
  • Bot, F. The effect of pulsed electric fields on carotenoids bioaccessibility: The role of tomato matrix / F. Bot, R. Verkerk, H. Mastwijk, M. Anese, V. Fogliano, E. Capuano // Food Chemistry. – 2018. – № 240. – Р. 415–421. http://dx.doi.org/10.1016/j.foodchem.2017.07.102
  • Arscott, S.A. Carrots of Many Colors Provide Basic Nutrition and Bioavailable Phytochemicals Acting as a Functional Food / S.A. Arscott, S.A. Tanumihardjo // Comprehensive reviews in food sci-ence and food safety, 2010. – V. 9. – Р. 223–239. DOI: 10.1111/j.1541-4337.2009.00103.x
  • Pace, B. Evaluation of quality, phenolic and carotenoid composition of fresh-cut purple Polignano carrots stored in modified atmosphere / B. Pace, I. Capotortoa, M. Cefola, P. Minasi, N. Montemurro, V. Carbone // Journal of Food Composition and Analysis. – 2020. – № 86. – 103363. https://doi.org/10.1016/j.jfca.2019.103363
  • Li, H. Ultra-performance liquid chromatographic separation of geometric isomers of carote-noids and antioxidant activities of 20 tomato cultivars and breeding lines / H. Li, Z. Deng, R. Liu, S. Loewen, R. Tsao // Food Chemistry. – 2012. – № 132. – Р. 508–517. doi:10.1016/j.foodchem. 2011.10.017
  • Choi, S. H. Protein, free amino acid, phenolic, β-carotene, and lycopene content, and antioxidative and cancer cell inhibitory effects of 12 greenhouse-grown commercial cherry tomato varieties / S. H. Choi, D.-S. Kim, N. Kozukue, H.-Je. Kim, Yo. Nishitani, M. Mizuno, C. E. Levin, M. Friedman // Journal of Food Composition and Analysis. – 2014. – № 34. – Р. 115–127. http://dx.doi.org/10.1016/j.jfca.2014.03.005
  • Delia, B. Rodriguez-Amaya. A guide to carotenoid analysis in foods: Doctoral Thesis / B. De-lia Brasil, 2001. – 64 р.
  • Kurz, Ch. HPLC-DAD-MSn characterisation of carotenoids from apricots and pumpkins for the evaluation of fruit product authenticity / Ch. Kurz, R. Carle, A. Schieber // Food Chemistry. – 2008. – № 110. – Р. 522–530. doi:10.1016/j.foodchem.2008.02.022
  • Bunea, A. Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.) / A. Bunea, M. Andjelkovic, C. Socaciu, O. Bobis, M. Neacsu, R. Verher, Jo. V. Camp // Food Chemistry. – 2008. – № 108. – Р. 649–656. DOI: 10.1016/j.foodchem.2007.11.056
  • Zhang, W. High pressure homogenization versus ultrasound treatment of tomato juice: Ef-fects on stability and in vitro bioaccessibility of carotenoids / W. Zhang, Yi. Yu, F. Xie, X. Gu, Ji. Wu, Zh. Wang // LWT – Food Science and Technology. – 2019. – № 116. – 108597. https://doi.org/10.1016/j.lwt.2019.108597
  • Lee, Hu. W. Simultaneous determination of carotenoids, tocopherols and phylloquinone in 12 Brassicaceae vegetables / Hu. W. Lee, Hu. Zhang, Xu Liang, Ch. N. Ong // LWT – Food Science and Technology. – 2020. – № 130. – 109649. https://doi.org/10.1016/j.lwt.2020.109649
  • Wang, Y.H., Transcript profiling of genes involved in carotenoid biosynthesis among three carrot cultivars with various taproot colors / Y.H. Wang, T. Li, R.R. Zhang, A. Khadr, Y.S. Tian, Z.S. Xu, A.S. Xiong // Protoplasma. – 2020. – № 257. – Р. 949–963 . DOI: 10.1007/s00709-020-01482-4
  • Gajewski, M. Some aspects of nutritive and biological value of carrot cultivars with orange, yellow, and purple colored roots / M. Gajewski, P. Szymczak, K. Elkner, A. Dabrowska, A. Kret, Danilcenko H. // Veg Crop Res Bull. – 2007. – № 61. – Р. 67–149.
  • Karniel, U., Development of zeaxanthin-rich tomato fruit through genetic manipulations of carotenoid biosynthesis / U. Karniel, A. Koch, D. Zamir, J. Hirschberg // Plant Biotechnol J. –2020. – № 18. – Р. 2292–2303. DOI: 10.1111/pbi.13387
  • Hermanns, A. S. Carotenoid Pigment Accumulation in Horticultural Plants / A. S. Hermanns, X. Zhou, Q. Xu, Ya. Tadmor, L. Li // Horticultural Plant Journal. – 2020. – № 6 (6). – Р. 343–360. https://doi.org/10.1016/j.hpj.2020.10.002
  • Georgiadou, E. C. Tissue-specific elucidation of lycopene metabolism in commercial tomato fruit cultivars during ripening / E. C. Georgiadou, Ch. Antoniou, I. Majak, V. Goulas, P. Filippou, B. Smolińska, Jo. Leszczyńska, V. Fotopoulos // Scientia Horticulturae. – 2021. – № 284. – 110144. https://doi.org/10.1016/j.scienta.2021.110144
  • Quijano-Ortega, N. FTIR-ATR Spectroscopy Combined with Multivariate Regression Modeling as a Preliminary Approach for Carotenoids Determination in Cucurbita spp. / N. Quijano-Ortega, C.A. Fuenmayor, C. Zuluaga-Dominguez, C. Diaz-Moreno, S. Ortiz-Grisales, M. García-Mahecha, S. Grassi // Appl. Sci. – 2020. – № 10. – Р. 3722–3732. DOI:10.3390/app10113722
  • Ellong,. E. N. Polyphenols, Carotenoids, Vitamin C Content in Tropical Fruits and Vegetables and Impact of Processing Methods / E. N. Ellong, C. Billard, S. Adenet, K. Rochefort // Food and Nutrition Sciences. – 2015. – № 6. – Р. 299–313. http://dx.doi.org/10.4236/fns.2015.63030
  • Нилова, Л.П. Влияние режимов сушки на содержание каротиноидов в тыквенных полуфабрикатах / Л.П. Нилова, С.М. Малютенкова // XXI век: итоги прошлого и проблемы на-стоящего плюс. – 2021. – Т. 10, № 3 (55). – С. 125–128. DOI: 10.46548/21vek-2021-1055-0024
  • de Carvalho, L.M.Ja. Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study / L.M.Ja. de Carvalho, P.B. Gomes, R.L. de Oliveira Godoy, S. Pacheco, P.H.F. do Monte, J.L.V. de Carvalho, M.R. Nutti, A.C.L. Neves, A.C.R. Vieira, S.R.R. Ramos // Food Research International. – 2012. – № 47. – Р. 337–340. DOI: 10.1016/j.foodres.2011.07.040
  • Raju, M. Carotenoid composition and vitamin A activity of medicinally important green leafy vegetables / M. Raju, S. Varakumar, R. Lakshminarayana, Th.P. Krishnakantha, V. Baskaran // Food Chemistry. – 2007. – № 101. – Р. 1598–1605. doi:10.1016/j.foodchem.2006.04.015
  • Alam, M. Kh. Minerals, vitamin C, and effect of thermal processing on carotenoids composi-tion in nine varieties orange-fleshed sweet potato (Ipomoea batatas L.) / M.Kh. Alam, S. Samsa, Z.H. Rana, M. Akhtaruzzaman, Sh.N. Islam // Journal of Food Composition and Analysis. – 2020. – № 92. – 103582. https://doi.org/10.1016/j.jfca.2020.103582
  • Kotíková, Z. Carotenoid profile and retention in yellow-, purple- and red-fleshed potatoes af-ter thermal processing / Z. Kotíková, M. Šulc, Ja. Lachman, V. Pivec, M. Orsák, K. Hamouz // Food Chemistry. – 2016. – № 197. – Р. 992–1001. http://dx.doi.org/10.1016/j.foodchem.2015.11.072
  • Stinco, C. M. Multivariate analyses of a wide selection of orange varieties based on carote-noid contents, color and in vitro antioxidant capacity / C. M. Stinco, M. L. Escudero-Gilete, F. J. Heredia, I. M. Vicario, A. J. Meléndez-Martínez // Food Research International. – 2016. – № 90. – Р. 194–204. http://dx.doi.org/10.1016/j.foodres.2016.11.005
  • Abliz, A. Effect of dynamic high pressure microfluidization treatment on physical stability, microstructure and carotenoids release of sea buckthorn juice / A. Abliz, Ji. Liu, L. Mao, F. Yuan, Ya. Gao // LWT – Food Science and Technology. – 2021. – №135. – 110277. https://doi.org/10.1016/ j.lwt.2020.110277
  • Pop, R. M. Carotenoid composition of berries and leaves from six Romanian sea buckthorn (Hippophae rhamnoides L.) varieties / R.M. Pop, Ya. Weesepoel, C. Socaciu, A. Pintea, Je.-P. Vincken, H. Gruppen // Food Chemistry. – 2014. – № 147. – Р. 1–9. http://dx.doi.org/10.1016/j.food-chem.2013.09.083
  • Нилова, Л.П. Антиоксидантные профили облепихи крушиновидной (Hippophaë rhamnoides L.) северо-запада России / Л.П. Нилова, С.М. Малютенкова // Вестник ВГУИТ. – 2021. – Т. 83, № 1. – С. 108–114. http://doi.org/10.20914/2310-1202-2021-1-108-114
  • Al-Yafeai, A. Characterization of carotenoids and vitamin E in R. rugosa and R. canina: Comparative analysis / A. Al-Yafeai, A. Malarski, V. Böhm // Food Chemistry. – 2018. – № 242. – Р. 435–442. http://dx.doi.org/10.1016/j.foodchem.2017.09.070
  • Andersson, S. C. Carotenoid content and composition in rose hips (Rosa spp.) during ripen-ing,determination of suitable maturity marker and implications for health promoting food products / S. C. Andersson, K. Rumpunen, E. Johansson, M. E. Olsson // Food Chemistry. – 2011. – № 128. – Р. 689–696. doi:10.1016/j.foodchem.2011.03.08
  • Головко, Т.К. Содержание и состав желтых пигментов в плодах морошки и черники в условиях среднетаежной зоны европейской части России / Т.К. Головко, О.В. Дымова, Е.А. Лашманова, О.А. Кузиванова // Известия Самарского научного центра Российской академии наук, 2011. – Т. 13. № 1(4). – С. 813–816.
  • Lashmanova, K.A. Northern berries as a source of carotenoids / K.A. Lashmanova, O.A. Kuzivanova, O.V. Dymova // Acta Biochimica Polonica. – 2012. – V. 59, № 1. – P. 133–134.
Еще
Статья научная