Классификация болезней листьев яблони с использованием набора данных изображений: подход многослойной сверточной нейронной сети

Автор: Антор Махмудул Хасан, Ризу Мд Ракиб Ул Ислам, Кумар Авинаш

Журнал: Информатика и автоматизация (Труды СПИИРАН).

Рубрика: Искусственный интеллект, инженерия данных и знаний

Статья в выпуске: Том 21 № 4, 2022 года.

Бесплатный доступ

Сельское хозяйство является одним из основных источников экономического роста в России; мировое производство яблок в 2019 году составило 87 миллионов тонн. Болезни листьев яблони являются основной причиной ежегодного сокращения производства яблок, что приводит к огромным экономическим потерям. Автоматизированные методы выявления болезней листьев яблони позволяют сократить трудоемкую работу по мониторингу яблоневых садов и раннему выявлению симптомов болезни. В этой статье предложена многослойная сверточная нейронная сеть (MCNN), которая способна классифицировать листья яблони по одной из следующих категорий: парша яблони, черная гниль и болезни яблоневой кедровой ржавчины, используя недавно созданный набор данных. В этом методе мы использовали методы аффинного преобразования и перспективного преобразования для увеличения размера набора данных. После этого операции предварительной обработки на основе метода кадрирования и выравнивания гистограммы OpenCV использовались для улучшения предлагаемого набора данных изображения. Экспериментальные результаты показывают, что система достигает точности обучения 98,40% и точности проверки 98,47% для предложенного набора данных изображения с меньшим количеством параметров обучения. Результаты предполагают более высокую точность классификации предложенной модели MCNN по сравнению с другими известными современными подходами. Эта предложенная модель может использоваться для обнаружения и классификации других типов болезней яблони из разных наборов данных изображений.

Еще

Искусственный интеллект, болезнь листьев яблони, обработка изображений, многослойная сверточная нейронная сеть, классификация

Короткий адрес: https://sciup.org/14127392

IDR: 14127392   |   DOI: 10.15622/ia.21.4.3

Статья