Классификация рентгеновских изображений грудной клетки больных вирусной пневмонией и COVID-19 с помощью нейронных сетей

Автор: В.Г. Ефремцев, Н.Г. Ефремцев, Е.П. Тетерин, П.Е. Тетерин, Е.С. Базавлук

Журнал: Компьютерная оптика @computer-optics

Рубрика: Численные методы и анализ данных

Статья в выпуске: 1 т.45, 2021 года.

Бесплатный доступ

В статье рассматривается применение нейронных сетей для классификации рентгенографических изображений больных пневмонией и COVID-19. Для выбора наилучших параметров изменения размеров и адаптивного выравнивания гистограммы яркости изображений, а также оптимальной архитектуры нейронной сети и ее гиперпараметров использовались precision, recall и f1-score. Высокие значения этих метрик качества классификации (> 0,91) убедительно свидетельствуют о надежном разграничении рентгенографических изображений больных пневмонией от больных COVID-19. Это открывает возможность создания модели c хорошей предсказательной способностью без привлечения готовых сложных моделей и без предварительного обучения на сторонних данных. Полученные результаты дают хорошие перспективы разработки чувствительных и надежных экспресс-методов диагностики заболевания COVID-19.

Еще

Обработка рентгенографических изображений, сверточная нейронная сеть, классификация, COVID-19.

Короткий адрес: https://sciup.org/140253877

IDR: 140253877   |   DOI: 10.18287/2412-6179-CO-765

Статья