Классы преобразований нестационарного сигнала в информационно-измерительных системах. III. Время-масштабные (вейвлет-) преобразования для спектрально-временного анализа

Автор: Меркушева А.В.

Журнал: Научное приборостроение @nauchnoe-priborostroenie

Рубрика: Оригинальные статьи

Статья в выпуске: 3 т.12, 2002 года.

Бесплатный доступ

Представлены задачи, связанные с время-масштабными (вейвлет-) преобразованиями для спектрально-временнóго анализа и локализации свойств нестационарных сигналов сложной формы в информационно-измерительных системах. Это - речевые сигналы, сигналы в области сейсмологии, изучения океана, в технике антенн и в других системах. Представлены основы теории и метода вейвлет-преобразования: базисы и фреймы, основные типы базисов и свойства преобразований. Признаки и свойства вейвлет-преобразований систематизированы и объединены классификацией.

Короткий адрес: https://sciup.org/14264252

IDR: 14264252

Список литературы Классы преобразований нестационарного сигнала в информационно-измерительных системах. III. Время-масштабные (вейвлет-) преобразования для спектрально-временного анализа

  • Меркушева А.В. Классы преобразований нестационарного сигнала в информационно-измерительных системах. II. Время-частотные преобразования//Научное приборостроение. 2002. Т. 12, № 2. С. 59-70.
  • Duffin R.J., Schaeffer A.C. A Class of Nonparametric Fourier Series//Transactions of American Mathematical Society. 1952. V. 72. P. 341.
  • Pei S.-Ch., Yeh M.-H. An Introduction to Discrete Finite Frames//IEEE Signal Processing Magazine. 1997. V. 14, N 6. P. 84-96.
  • Zibulski M., Zeevi Y.Y. Oversampling in the Gabor Scheme//IEEE Transactions on Signal Processing. 1993. V. 41, N 8. P. 2679-2687.
  • Oppenheim A.N., Lim J.S. Importance of Phase in Signals//Proceedings of IEEE. 1981. V. 69, N 5. P. 529-541.
  • Cohen A., Daubechies I., Feauveau J.C. Biorthogonal Bases of Compactly Supported Wavelets//Communications on Pure and Applied Mathematics. 1992. V. 45. P. 485.
  • Daubechies I. Painless Nonorthogonal Expansions//Journal of Mathematical. Physics. 1986. V. 27. P. 1271-1283.
  • Morris J.M., Lu Y. Generalized Gabor Expansion of Discrete-Time Signal via Biorthogonal-Like Sequences//IEEE Transactions on Signal Processing. 1996. V. 44, N 6. P. 1378-1391.
  • Bastiaans M.J. Decomposition of Signals in Gabor Series of Elementary Gaussian Signals//Proceedings of IEEE. 1980. V. 68, N 4. P. 123.
  • Quian S., Chen D. Optimal Biorthogonal Functions for Window in Gabor Time-Frequency Analysis//IEEE Transactions on Signal Processing. 1994. V. 42, N 3. P. 694-697.
  • Hess-Nielsen N., Vickerhauser M.V. Wavelets and Time-Frequency Analysis//Proceedings of IEEE. 1996. V. 84, N 4. P. 523-540.
  • Kelly S., Kon M. Pointwise Convergence of Wavelet Expansions.//Bull. American Mathematical Society. 1994. V. 29. P. 87-94.
  • Mallat S.G. Multifrequency Chanel Decompositions of Image and Wavelet Models//IEEE Transactions on Acoustic, Speech and Signal Processing. 1989. V. 37, N 12. P. 2091-2110.
  • Rioul O., Vetterli M. Wavelet and Signal Processing//Signal Processing Technology and Applications./Ed. Ackenhausen J.G. IEEE Press, 1995.
  • Daubechies I. Ten Lectures on Wavelets//Conference Board of Mathematical Sciences. Society of Industrial and Applied Mathematics (SIAM), 1991. P. 258.
  • Morris J.M., Lu Y. Discrete Gabor Expansion of Discrete-Time Signal via Frame Theory//Signal Processing. 1994. V. 40, N 2, 3. P.155-181.
  • Qian S., Chen D. Discrete Gabor Transform//IEEE Transactions on Signal Processing. 1993. V. 41, N 7. P. 2429-2438.
  • Zibulski M., Zeevi Y. Frame Analysis of Discrete Gabor Scheme//IEEE Transactions on Signal Processing. 1994. V. 42, N 4. P. 942-945.
  • Daubechies I. Orthogonal Bases of Compactly Supported Wavelets//Communications in Pure and Applied Mathematics. 1988. V. 41, N 7. P. 909-996.
  • Daubechies I. Orthogonal Basis and Wavelets//SIAM Journal of Mathematical Analysis. 1993. V. 24, N 2. P. 499.
  • Daubechies I. Wavelet Transforms and Orthogonal Wavelet Bases//Proceedings of Symposia in Applied Mathematics. 1993. V. 47. P. 1-32.
  • Heil G.E., Walnut D.F. Continuous and Discrete Wavelet Transforms//SIAM Review. 1989. V. 31, N 12. P. 628.
  • Mallat S.G. A Theory for Multiresolution Signal Decomposition: the Wavelet Representation//IEEE Transactions on Pattern Analysis and Machine Intelligence. 1989. V. 11, N 7. P. 674-693.
  • Mallat S.G. Multiresolution Approximations and Wavelet Orthogonal Bases in L2(R)//Transactions of American Mathematical Society. 1989. N 315. P. 69-87.
  • Strang G. Wavelet Transformations and Fourier Transformations//Bull. American Mathematical Society. 1993. V. 28. P. 288-305.
  • Strang G. Wavelets and Diliation Equations//SIAM Review. 1989. V. 31, N 4. P. 614.
  • Cohen A., Kovacevic J. Wavelets: Mathematical Background//Proceedings of IEEE. 1996. V. 84, N 4. P. 514-522.
  • Воробьев В.И., Грибунин В.Г. Теория и практика вейвлет. Л., 1999. 203 с.
  • Уидроу Б., Стирнз С. Адаптивная обработка сигналов. М.: Радио и связь, 1989. 439 с.
  • Villemois L.F. Energy Moments in Time and Frequency for 2-Scale Equations and Wavelets//SIAM Journal of Mathematical Analysis. 1992. V. 23. P. 1119-1153.
  • Akansu A.N., Tazebay M.V., Medley M.I., Das P.K. Wavelet and Subband Transforms: Foundations and Communication Applications//IEEE Communication Magazine. 1997. V. 35, N 12. P. 104-115.
  • Kurosawa K., Jamamoto J. A Simple Design Method of Perfect Reconstruction Quadrature Mirror Filter Banks//IEEE Transactions on Circuits and Systems, II -Analog and Digital Signal Processing. 1994. V. 41, N 3. P. 243-245.
  • Lee J.H., Yang S.J. Perfect Reconsruction Filter Banks Having Linear Phase//IEEE Transactions on Acoustics, Sound and Signal Processing. 1986. V. ASSP-34, N 6.
  • Grossman A., Morlet J. Decompositions of Hardy Functions into Square Integrand Wavelets of Constant Shape//SIAM Journal of Mathematical Analysis. 1984. V. 15. P. 723.
  • Chui Ch.K., Li C. Nonorthogonal Wavelet Packets//SIAM Journal of Mathematical Analysis. 1993. V. 24. P. 712-738.
  • Chui Ch.K.//Transactions of American Mathematical Society. 1992. V. 330. P. 907-909.
  • Chui Ch.K., Wang J-Z. A Cardinal Spline Approach to Wavelets//Proceedings of American Mathematical Society. 1991. V. 113, N 3. P. 785-789.
  • Chui Ch.K., Wang J.Z. Compactly Supported Spline-Wavelets and Duality Principle//Transactions of American Mathematical Society. 1992. V. 330. P. 903-907.
  • Unser M. A Family of Polinomial Spline Wavelet Transformations//Signal Processing. 1993. V. 30. P. 141-162.
  • Unser M., Aldroubi A. Shift-Orthogonal Wavelet Basis Using Splines//IEEE Signal Processing Letters. 1996. V. 3, N 3. P. 85.
  • Yang R.H., Lim Y.C. Novel Efficient Approach for the Design of Equiripple Quadrature Mirror Filters//IEE Proceedings on Vision, Image and Signal Processing. 1994. V. 141, N 2 (April). P. 95-100.
  • Nemer E., Goubran R., Mahmoud S. SNR Estimation of Speech Signal Using Subbands and Forth-Order Statistics//IEEE Signal Processing Letters. 1999. V. 6, N 7. P. 171-174.
  • Walter G.G. A Sampling Theorem for Wavelet Subspaces//IEEE Transactions of Information Theory. 1992. V. 38, N 2. P. 881-884.
  • Daubechies I., Jaffard S., Journe J.L. A Simple Wilson Orthonormal Basis with Exponential Decay//SIAM Journal of Mathematical Analysis. 1991. V. 22, N 2. P. 554.
Еще
Статья научная