Клеточные и молекулярные механизмы контроля автофагии: потенциал для повышения стрессоустойчивости и продуктивности культурных растений
Автор: Рабаданова К.К., Тютерева Е.В., Мацкевич В.С., Демидчик В.В., Войцеховская О.В.
Журнал: Сельскохозяйственная биология @agrobiology
Рубрика: Обзоры, проблемы
Статья в выпуске: 5 т.53, 2018 года.
Бесплатный доступ
Сельскохозяйственные растения не способны достичь максимальной продуктивности, если постоянно подвергаются стрессовым воздействиям. При стрессе растения генерируют многокомпонентный метаболический, физиологический и генетический стрессовый ответ, позволяющий им адаптироваться к неблагоприятным условиям. Так, часть содержимого клетки может перевариваться, катаболически высвобождая энергию и вещества для выживания. Этот процесс известен как автофагия (J.H. Hurley с соавт., 2017). Кроме того, часть клеток может отмереть, чтобы позволить другим выжить. Механизм гибели в подобном случае запрограммирован природой и называется программированной клеточной смертью (ПКС) (W.G. van Doorn с соавт., 2011). Оба указанных процесса свойственны всем типам эукариотических клеток и представляют собой эволюционно высококонсервативные программы. Они имеют исключительно важное значение для роста и развития растений, а также для стрессового ответа и выживания в неблагоприятных условиях. Автофагию и ПКС широко изучают на животных и дрожжевых клетках, начиная с 1960-х годов, но на растениях такие исследования проводятся относительно недавно...
Автофагия, калий, программированная клеточная смерть, старение, стресс, транспорт ассимилятов, урожай
Короткий адрес: https://sciup.org/142216595
IDR: 142216595 | DOI: 10.15389/agrobiology.2018.5.881rus
Список литературы Клеточные и молекулярные механизмы контроля автофагии: потенциал для повышения стрессоустойчивости и продуктивности культурных растений
- Hurley J.H., Young L.N. Mechanisms of autophagy initiation. Annu. Rev. Biochem., 2017, 86: 225-244 ( ) DOI: 10.1146/annurev-biochem-061516-044820
- Klionsky D.J. The molecular machinery of autophagy: unanswered questions. J. Cell Sci., 2005, 118: 7-18 ( ) DOI: 10.1242/jcs.01620
- Reumann S., Voitsekhovskaja O., Lillo C. From signal transduction to autophagy of plant cell organelles: lessons from yeast and mammals and plant-specific features. Protoplasma, 2010, 247(3-4): 233-256 ( ) DOI: 10.1007/s00709-010-0190-0
- van Doorn W.G., Beers E.P., Dang J.L., Franklin-Tong V.E., Gallois P., Hara-Nishimura I., Jones A.M., Kawai-Yamada M., Lam E., Mundy J., Mur L.A.J., Petersen M., Smertenko A., Taliansky M., Van Breusegem F., Wolpert T., Woltering E., Zhivotovsky B., Bozhkov P.V. Morphological classification of plant cell deaths. Cell Death Differ., 2011, 18(8): 1241-1246 ( ) DOI: 10.1038/cdd.2011.36
- Lam E. Controlled cell death, plant survival and development. Nat. Rev. Mol. Cell Biol., 2004, 5(4): 305-315 ( ) DOI: 10.1038/nrm1358
- Самуилов В.Д., Олескин А.В., Лагунова Е.М. Программируемая клеточная смерть. Биохимия, 2000, 8: 1029-1046.
- Liu Y., Bassham D.C. Autophagy: pathways for self-eating in plant cells. Annu. Rev. Plant Biol., 2012, 63: 215-237 ( ) DOI: 10.1146/annurev-arplant-042811-105441
- van Doorn W.G., Woltering E.J. Many ways to exit? Cell death categories in plants. Trends Plant Sci., 2005, 10(3): 117-122 ( ) DOI: 10.1016/j.tplants.2005.01.006
- Xiong Y., Sheen J. Rapamycine and glucose-target of rapamycine (TOR) protein signaling in plants. J. Biol. Chem., 2012, 287: 2836-2842 ( ) DOI: 10.1074/jbc.M111.300749
- Aubert S., Gout E., Bligny R., Marty-Mazars D., Barrieu F., Alabouvette J., Marty F., Douce R. Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. J. Cell Biol., 1996, 133(6): 1251-1263 ( ) DOI: 10.1083/jcb.133.6.1251
- Moriyasu Y., Ohsumi Y. Autophagy in tobacco suspension-cultured cells in response to sucrose starvation Plant Physiol., 1996, 111(4): 1233-1241 ( ) DOI: 10.1104/pp.111.4.1233
- Thompson A.R., Vierstra R.D. Autophagic recycling: lessons from yeast help define the process in plants. Curr. Opin. Plant Biol., 2005, 8: 165-173 ( ) DOI: 10.1016/j.pbi.2005.01.013
- Voitsekhovskaja O.V., Schiermeyer A., Reumann S. Plant peroxisomes are degraded by starvation-induced and constitutive autophagy in tobacco BY-2 suspension-cultured cells. Front. Plant Sci., 2014, 18(5): article 629 ( ) DOI: 10.3389/fpls.2014.00629
- Toyooka K., Okamoto T., Minamikawa T. Cotyledon cells of Vigna mungo seedlings use at least two distinct autophagic machineries for degradation of starch granules and cellular components. J. Cell Biol., 2001, 154: 973-982 ( ) DOI: 10.1083/jcb.200105096
- Guiboileau A., Sormani R., Meyer C., Masclaux-Daubresse C. Senescence and death of plant organs: nutrient recycling and developmental regulation. C. R. Biol., 2010, 333(4): 382-391 ( ) DOI: 10.1016/j.crvi.2010.01.016
- Yoshimoto K., Jikumaru Y., Kamiya Y., Kusano M., Consonni Ch., Panstruga R., Ohsumi Y., Shirasua K. Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. The Plant Cell, 2009, 21: 2914-2927 ( ) DOI: 10.1105/tpc.109.068635
- Wang Y., Yu B., Zhao J., Guo J., Li Y., Han S., Huang L., Du Y., Hong Y., Tang D., Liu Y. Autophagy contributes to leaf starch degradation. The Plant Cell, 2013, 25: 1383-1399 ( ) DOI: 10.1105/tpc.112.108993
- Demidchik V., Tyutereva E.V., Voitsekhovskaja O.V. The role of ion disequilibrium in induction of root cell death and autophagy by environmental stresses. Funct. Plant Biol., 2017, 45(1): 28-46 ( ) DOI: 10.1071/FP16380
- Pérez-Pérez M.E., Couso I., Domínguez-González M., Lemaire S.D., Crespo J.L. Redox control of autophagy in photosynthetic organisms. In: Progress in botany. Vol. 79/F. Cánovas, U. Lüttge, R. Matyssek (eds.). Springer, Cham, 2017 ( ) DOI: 10.1007/124_2017_6
- Zhou J., Yu J.Q., Chen Z. The perplexing role of autophagy in plant innate immune responses Mol. Plant Pathol., 2014, 15(6): 637-645 ( ) DOI: 10.1111/mpp.12118
- Minibayeva F., Ponomareva A., Dmitrieva S., Ryabovol V. Oxidative stress-induced autophagy in plants: the role of mitochondria. Plant Physiol. Bioch., 2012, 59: 11-19 ( ) DOI: 10.1016/j.plaphy.2012.02.013
- Ishida H., Wada S. Autophagy of whole and partial chloroplasts in individually darkened leaves: a unique system in plants? Autophagy, 2009, 5: 736-737 ( ) DOI: 10.4161/auto.5.5.8568
- Shibata M., Oikawa K., Yoshimoto K., Kondo M., Mano S., Yamada K., Hayashi M., Sakamoto W., Ohsumi Y., Nishimura M. Highly oxidized peroxisomes are selectively degraded via autophagy in Arabidopsis. The Plant Cell, 2013, 25: 4967-4983 ( ) DOI: 10.1105/tpc.113.116947
- Niki T., Saito S., Gladish D.K. Granular bodies in root primary meristem cells of Zea mays L. var. Cuscoensis K. (Poaceae) that enter young vacuoles by invagination: a novel ribophagy mechanism. Protoplasma, 2014, 251(5): 1141-1149 ( ) DOI: 10.1007/s00709-014-0622-3
- Reggiori F., Klionsky D.J. Autophagic processes in yeast: mechanism, machinery and regulation. Genetics, 2013, 194(2): 341-361 ( ) DOI: 10.1534/genetics.112.149013
- Ковалева О.В., Шитова М.С., Зборовская И.Б. Аутофагия: клеточная гибель или способ выживания? Клиническая онкогематология, 2015, 2(2): 103-113.
- Bassham D.C. Plant autophagy -more than a starvation response. Curr. Opin. Plant Biol., 2007, 10(6): 587-593 ( ) DOI: 10.1016/j.pbi.2007.06.006
- van der Wilden W., Herman E.M., Chrispeels M.J. Protein bodies of mung bean cotyledons as autophagic organelles. PNAS USA, 1980, 77(1): 428-432.
- Yamasaki A., Noda N.N. Structural biology of the Cvt pathway. J. Mol. Biol., 2017, 429(4): 531-542 ( ) DOI: 10.1016/j.jmb.2017.01.003
- Kim S.H., Kwon C., Lee J.H., Chung T. Genes for plant autophagy: functions and interactions. Mol. Cells, 2012, 34(5): 413-423 ( ) DOI: 10.1007/s10059-012-0098-y
- Yan Q., Wang J., Fu Z.Q., Chen W. Endocytosis of AtRGS1 is regulated by the autophagy pathway after D-glucose stimulation. Front. Plant Sci., 2017, 8: 1229 ( ) DOI: 10.3389/fpls.2017.01229
- Ryabovol V.V., Minibayeva F.V. Molecular mechanisms of autophagy in plants: role of ATG8 proteins in formation and functioning of autophagosomes. Biochemistry (Moscow), 2016, 81(4): 348-363 ( ) DOI: 10.1134/S0006297916040052
- Michaeli S., Galili G., Genschik P., Fernie A.R., Avin-Wittenberg T. Autophagy in plants -what's new on the menu? Trends Plant. Sci., 2016, 21(2): 134-144 ( ) DOI: 10.1016/j.tplants.2015.10.008
- Alers S., Wesselborg S., Stork B. ATG13: Just a companion, or an executor of the autophagic program? Autophagy, 2014, 10(6): 944-956 ( ) DOI: 10.4161/auto.28987
- Suttangkakul A., Li F., Chung T., Vierstra R.D. The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. The Plant Cell, 2011, 23: 3761-3779 ( ) DOI: 10.1105/tpc.111.090993
- Li F., Vierstra R.D. Arabidopsis ATG11, a scaffold that links the ATG1-ATG13 kinase complex to general Autophagy and selective mitophagy. Autophagy, 2014, 10(8): 1466-1467 ( ) DOI: 10.4161/auto.29320
- Kawamata T., Kamada Y., Kabeya Y., Sekito T., Ohsumi Y. Organization of the pre-autophagosomal structure responsible for autophagosome formation. Mol. Biol. Cell, 2008, 19(5): 2039-2050 ( ) DOI: 10.1091/mbc.E07-10-1048
- Avin-Wittenberg T., Honig A., Galili G. Variations on a theme: plant autophagy in comparison to yeast and mammals. Protoplasma, 2012, 249(2): 285-299 ( ) DOI: 10.1007/s00709-011-0296-z
- Doelling J.H., Walker J.M., Friedman E.M., Thompson A.R, Vierstra R.D. The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J. Biol. Chem., 2002, 277(36): 33105-33114 ( ) DOI: 10.1074/jbc.M204630200
- Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol., 2001, 2: 211-216 ( ) DOI: 10.1038/35056522
- Phillips A.R., Suttangkakul A., Vierstra R.D. The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics, 2008, 178(3): 1339-1353 ( ) DOI: 10.1534/genetics.107.086199
- Kellner R., de la Concepcion J.C., Maqbool A., Kamoun S., Dagdas Y.F. ATG8 expansion: a driver of selective autophagy diversification? Trends Plant. Sci., 2017, 22(3): 204-214 ( ) DOI: 10.1016/j.tplants.2016.11.015
- Li F., Vierstra R.D. Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends Plant Sci., 2012, 17: 526-537 ( ) DOI: 10.1016/j.tplants.2012.05.006
- Pérez-Pérez M.E., Zaffagnini M., Marchand C.H., Crespo J.L., Lemaire S.D. The yeast Autophagy protease Atg4 is regulated by thioredoxin. Autophagy, 2014, 10(11): 1953-1864 ( ) DOI: 10.4161/auto.34396
- Замятнин А.А. Протеолитические ферменты растений, вовлеченные в процессы регулируемой смерти клеток. Успехи биологической химии, 2015, 55: 145-180.
- Thompson A.R., Doelling J.H., Suttangkakul A., Vierstra R.D. Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol., 2005, 138(4): 2097-2110 ( ) DOI: 10.1104/pp.105.060673
- Le Bars R., Marion J., Satiat-Jeunemaitre B., Bianchi M.W. Folding into an autophagosome: ATG5 sheds light on how plants do it. Autophagy, 2014, 10(10): 1861-1863 ( ) DOI: 10.4161/auto.29962
- Monastyrska I., Rieter E., Klionsky D.J., Reggiori F. Multiple roles of the cytoskeleton in autophagy. Biol. Rev. Camb. Philos., 2009, 84(3): 431-448 ( ) DOI: 10.1111/j.1469-185X.2009.00082.x
- Wang Y., Zheng X., Liu Y. Functional links between microtubules, autophagy and leaf starch degradation in plants. Plant Signaling and Behavior, 2016, 11(7): e1201626 ( ) DOI: 10.1080/15592324.2016.1201626
- Moreau K., Renna M., Rubinsztein D.C. Connections between SNAREs and autophagy. Trends Biochem. Sci., 2013, 38(3): 57-63 ( ) DOI: 10.1016/j.tibs.2012.11.004
- Han S., Wang Y., Zheng X., Jia Q., Zhao J., Bai F., Hong Y., Liu Y. Cytoplastic glyceraldehyde-3-phosphate dehydrogenases interact with ATG3 to negatively regulate autophagy and immunity in Nicotiana benthamiana. Plant Cell, 2015, 27: 1316-1331 ( ) DOI: 10.1105/tpc.114.134692
- Henry E., Fung N., Liu J., Drakakaki G., Coaker G. Beyond glycolysis: GAPDHs are multi-functional enzymes involved in regulation of ROS, autophagy, and plant immune responses. PLOS Genetics, 2015, 11: e1005199 ( ) DOI: 10.1371/journal.pgen.1005199
- Crespo J.L., S. Diaz-Troya S., Florencio F.J. Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii. Plant. Physiol., 2005, 139: 1736-1749 ( ) DOI: 10.1104/pp.105.070847
- Liu Y., Bassham D.C. TOR is a negative regulator of autophagy in Arabidopsis thaliana. PLoS ONE, 2010, 5(7): e11883 ( ) DOI: 10.1371/journal.pone.0011883
- Yip C.K., Murata K., Walz T., Sabatini D.M., Kang S.A. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol. Cell., 2010, 38(5): 768-774 ( ) DOI: 10.1016/j.molcel.2010.05.017
- Chang Y.-Y., Neufeld T.P. An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation. Mol. Biol. Cell, 2009, 20(7): 2004-2014 ( ) DOI: 10.1091/mbc.E08-12-1250
- Galluzzi L., Pietrocola F., Levine B., Kroemer G. Metabolic control of autophagy. Cell, 2014, 159(6): 1263-1276 ( ) DOI: 10.1016/j.cell.2014.11.006
- Chen L., Su Z.-Z., Huang L., Xia F.-N., Qi H., Xie L.-J., Xiao S., Chen Q.-F. The AMP-activated protein kinase KIN10 is involved in the regulation of autophagy in Arabidopsis. Front. Plant Sci., 2017, 8: article 1201 ( ) DOI: 10.3389/fpls.2017.01201
- Patel S., Caplan J., Dinesh-Kumar S.P. Autophagy in the control of programmed cell death. Curr. Opin. Plant Biol., 2006, 9(4): 391-396 ( ) DOI: 10.1016/j.pbi.2006.05.007
- Liu Y., Schiff M., Czymmek K., Tallócz, Z., Levine B., Dinesh-Kumar S.P. Autophagy regulates programmed Cell death during the plant innate immune response. Cell, 2005, 121(4): 567-577 ( ) DOI: 10.1016/j.cell.2005.03.007
- Shibuya K., Yamada T., Ichimura K. Autophagy regulates progression of programmed cell death during petal senescence in Japanese morning glory. Autophagy, 2009, 5(4): 546-547 ( ) DOI: 10.4161/auto.5.4.8310
- Kabbage M., Kessens R., Bartholomay L.C., William B. The life and death of a plant cell. Annu. Rev. Plant Biol., 2017, 68: 375-404 ( ) DOI: 10.1146/annurev-arplant-043015-111655
- Фомичева А.С., Тужиков А.И., Белошистов Р.Е., Трусова С.В., Галиуллина Р.А., Мочалова Л.В., Чичкова Н.В., Вартапетян А.Б. Программированная клеточная смерть у растений. Успехи биологической химии, 2012, 52: 97-126.
- Collazo C., Chacуn O., Borras O. Programmed cell death in plants resembles apoptosis of animals. Biotecnologia Aplicada, 2006, 23: 1-10.
- Trewavas A., Knight M. Mechanical signalling, calcium and plant form. Plant Mol. Biol., 1994, 26(5): 1329-1341 ( ) DOI: 10.1007/BF00016478
- Demidchik V., Maathuis F.J.M. Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol., 2007, 175(3): 387-405 ( ) DOI: 10.1111/j.1469-8137.2007.02128.x
- Demidchik V. Reactive oxygen species and oxidative stress in plants. In: Plant stress physiology. 2nd edition/S. Shabala (ed.). Wallingford, CABI, 2012: 24-58 ( ) DOI: 10.1079/9781780647296.0064
- Demidchik V., Shabala S.N., Coutts K.B., Tester M.A., Davies J. Free oxygen radicals regulate plasma membrane Ca2+-and K+-permeable channels in plant root cells. J. Cell Sci., 2003, 116: 81-88 ( ) DOI: 10.1242/jcs.00201
- Demidchik V., Cuin T.A., Svistunenko D., Smith S.J., Miller A.J., Shabala S., Sokolik A., Yurin V. Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J. Cell Sci., 2010, 123: 1468-1479 ( ) DOI: 10.1242/jcs.064352
- Demidchik V. Mechanisms and physiological roles of K+ efflux from root cells. J. Plant Physiol., 2014, 171(9): 696-707 ( ) DOI: 10.1016/j.jplph.2014.01.015
- Maathuis F.J.M, Amtmann A. K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Annals of Botany, 1999, 84(2): 123-133 ( ) DOI: 10.1006/anbo.1999.0912
- Hos E., Vavasseur A., Mouline K., Dreyer I., Gaymard F., Porée F., Boucherez J., Lebaudy A., Bouchez D., Very A.A., Simonneau T., Thibaud J.B., Sentenac H. The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. PNAS, 2003, 100(9): 5549-5554 ( ) DOI: 10.1073/pnas.0733970100
- Li J., Zhang H., Lei H., Jin M., Yue G., Su Y. Functional identification of a GORK potassium channel from the ancient desert shrub Ammopiptanthus mongolicus (Maxim.) Cheng f. Plant. Cell. Rep., 2016, 35(4): 803-815 ( ) DOI: 10.1007/s00299-015-1922-6
- Nassery H. The effects of salt and osmotic stress on the retention of potassium by excised barley and bean roots. New Phytol., 1975, 75(1): 63-67 ( ) DOI: 10.1111/j.1469-8137.1975.tb01371.x
- Shabala S., Demidchik V., Shabala L., Cuin T.A., Smith S.J., Miller A.J., Davies J.M., Newman I.A. Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol., 2006, 141: 1653-1665 ( ) DOI: 10.1104/pp.106.082388
- MacKinnon R. Potassium channels and the atomic basis of selective ion conduction (Nobel lecture). Angew. Chem. Int. Edit., 2004, 43(33): 4264-4277 ( ) DOI: 10.1002/anie.200400662
- Garcia-Mata C., Wang J., Gajdanowicz P., Gonzalez W., Hills A., Donald N., Riedelsberger J., Amtmann A., Dreyer I., Blatt M.R. A minimal cysteine motif required to activate the SKOR K+ channel of Arabidopsis by the reactive oxygen species H2O2. J. Biol. Chem., 2010, 285(38): 29286-29294 ( ) DOI: 10.1074/jbc.M110.141176
- Halliwell B., Gutteridge J.M.C. Free radicals in biology and medicine. Oxford University Press, USA, 2015 (doi: 10.1093/acprof:oso/9780198717478.001.0001).
- Demidchik V., Shabala S. Mechanisms of cytosolic calcium elevation in plants: the role of ion channels, calcium extrusion systems and NADPH oxidase-mediated ‘ROS-Ca2+ Hub’. Funct. Plant Biol., 2017, 45(1): 9-27 ( ) DOI: 10.1071/FP16420
- Bortner C.D., Hughes F.M. Jr., Cidlowski J.A. A primary role for K+ and Na+ efflux in the activation of apoptosis. J. Biol. Chem., 1997, 272(51): 32436-32442 ( ) DOI: 10.1074/jbc.272.51.32436
- Yu S.P., Yeh C.H., Sensi S.L., Gwag B.J., Canzoniero L.M., Farhangrazi Z.S., Ying H.S., Tian M., Dugan L.L., Choi D.W. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science, 1997, 278(5335): 114-117 ( ) DOI: 10.1126/science.278.5335.114
- Park I.-S., Ja-Eun K. Potassium efflux during apoptosis. J. Biochem. Mol. Biol., 2002, 35(1): 41-46 ( ) DOI: 10.5483/BMBRep.2002.35.1.041
- Remillard C.V., Yuan J.X. Activation of K+ channels: an essential pathway in programmed cell death. Am. J. Physiol. -Lung C., 2004, 286(1): 49-67 ( ) DOI: 10.1152/ajplung.00041.2003