Клеточные и надклеточные уровни взаимодействия ретровирусов с хозяином на примере вируса бычьего лейкоза. Сообщение I. Проникновение в клетку и интеграция в геном хозяина

Автор: Глазко В.И., Косовский Г.Ю., Глазко Т.Т., Донник И.М.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Обзоры, проблемы

Статья в выпуске: 6 т.53, 2018 года.

Бесплатный доступ

Диагностика ретровирусных инфекций и предупреждение их распространения у животных сельскохозяйственных видов (в частности, низкая эффективность вакцинации) до сих пор все еще недостаточно разработаны прежде всего в связи с тем, что каскад событий, лежащий в основе взаимодействия ретровируса с объектом заражения имеет сложную иерархию и реализуется на разных уровнях организации - молекулярном (включая клеточные органеллы), собственно клеточном и надклеточном, связанным с функцией клеточных сетей иммунной системы. В настоящей работе представлен обзор собственных и имеющихся в литературе данных о взаимодействии ретровирусного патогена (на примере вируса бычьего лейкоза - bovine leukemia virus, BLV) с внутренними структурами клеток-мишеней. Анализ этих результатов позволил нам предположить, что ключевым фактором, определяющим интеграцию провирусной ДНК в геном хозяина при ретровирусной инфекции, может быть снижение внутриклеточного контроля транспозиций мобильных генетических элементов, тесно связанных по происхождению с ретровирусными инфекциями...

Еще

Ретровирус, вирус бычьего лейкоза, инфекционный цикл, в-лимфоциты, рецептор вируса бычьего лейкоза, обратная транскриптаза, интеграза, мобильные генетические элементы

Короткий адрес: https://sciup.org/142220058

IDR: 142220058   |   DOI: 10.15389/agrobiology.2018.6.1093rus

Список литературы Клеточные и надклеточные уровни взаимодействия ретровирусов с хозяином на примере вируса бычьего лейкоза. Сообщение I. Проникновение в клетку и интеграция в геном хозяина

  • Nishiike M., Haoka M., T., Kohda T., Mukamoto M. Development of a preliminary diagnostic measure for bovine leukosis in dairy cows using peripheral white blood cell and lymphocyte counts. J. Vet. Med. Sci., 2016, 78(7): 1145-1151 ( ) DOI: 10.1292/jvms.16-0022
  • Kosovskii G.Yu., Glazko V.I., Koval’chuk S.N., Arkhipova A.L., Glazko T.T. Expression of NK-lysin, blvr, ifn-a and blood cell populations in cows infected by bovine leukemia virus. Sel’skokhozyaistvennaya Biologiya , 2017, 52(4): 785-794 ( ) DOI: 10.15389/agrobiology.2017.4.785eng
  • Sagata N., Yasunaga T., Tsuzuku-Kawamura J., Ohishi K., Ogawa Y., Ikawa Y. Complete nucleotide sequence of the genome of bovine leukemia virus: its evolutionary relationship to other retroviruses. PNAS USA, 1985, 82: 677-681
  • Mirsky M.L., Olmstead C.A., Da Y., Lewin H.A. The prevalence of proviral bovine leukemia virus in peripheral blood mononuclear cells at two subclinical stages of infection. J. Virol., 1996, 70: 2178-2183.
  • Schwartz I., Bensaid A., Polack B., Perrin B., Berthelemy M., Levy D. In vivo leukocyte tropism of bovine leukemia virus in sheep and cattle. J. Virol., 1994, 68: 4589-4596.
  • Gillet N., Florins A., Boxus M., Burteau C., Nigro A., Vandermeers F., Balon H., Bouzar A.B., Defoiche J. Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human. Retrovirology, 2007, 4: 18 ( )
  • DOI: 10.1186/1742-4690-4-18
  • Gutiérrez G., Rodríguez S.M., de Brogniez A., Gillet N., Golime R., Burny A., Jaworski J.P., Alvarez I., Vagnoni L., Trono K., Willems L. Vaccination against d-retroViruses: the bovine leukemia virus paradigm. Viruses, 2014, 6(6): 2416-2427 ( )
  • DOI: 10.3390/v6062416
  • Forti K., Rizzo G., Cagiola M., Ferrante G., Marini C., Feliziani F., Pezzotti G., De Giuseppe A. Identification of a novel overlapping sequential E epitope (E') on the bovine leukaemia virus SU glycoprotein and analysis of immunological data. Vet. Microbiol., 2014, 172(1-2): 157-167 ( )
  • DOI: 10.1016/j.vetmic.2014.05.016
  • Murakami H., Uchiyama J., Suzuki C., Nikaido S., Shibuya K., Sato R., Maeda Y., Tomioka M., Takeshima S.N., Kato H., Sakaguchi M., Sentsui H., Aida Y., Tsukamoto K. Variations in the viral genome and biological properties of bovine leukemia virus wild-type strains. Virus Res., 2018, 253: 103-111 ( )
  • DOI: 10.1016/j.virusres.2018.06.005
  • Melamed A., Yaguchi H., Miura M., Witkover A., Fitzgerald T.W., Birney E. Bangham C.R. The human leukemia virus HTLV-1 alters the structure and transcription of host chromatin in cis. eLife, 2018, 7: e36245 ( )
  • DOI: 10.7554/eLife.36245
  • Satou Y., Miyazato P., Ishihara K., Yaguchi H., Melamed A., Miura M., Fukuda A., Nosaka K., Watanabe T., Rowan A.G., Nakao M., Bangham C.R. The retrovirus HTLV-1 inserts an ectopic CTCF-binding site into the human genome. PNAS USA, 2016, 113(11): 3054-3059 ( )
  • DOI: 10.1073/pnas.1423199113
  • Artesi M., Marçais A., Durkin K., Rosewick N., Hahaut V., Suarez F., Trinquand A., Lhermitte L., Asnafi V., Avettand-Fenoel V., Burny A., Georges M., Hermine O., Van den Broeke A. Monitoring molecular response in adult T-cell Leukemia by high-throughput sequencing analysis of HTLV-1 clonality. Leukemia, 2017, 31(11): 2532-2535 ( )
  • DOI: 10.1038/leu.2017.260
  • Gillet N.A., Gutiérrez G., Rodriguez S.M., de Brogniez A., Renotte N., Alvarez I., Trono K., Willems L. Massive depletion of bovine leukemia virus proviral clones located in genomic transcriptionally active sites during primary infection. PLoS Pathog., 2013, 9(10): e1003687 ( )
  • DOI: 10.1371/journal.ppat.1003687
  • Barez P.Y., de Brogniez A., Carpentier A., Gazon H., Gillet N., Gutiérrez G., Hamaidia M., Jacques J.R., Perike S., Neelature Sriramareddy S., Renotte N., Staumont B., Reichert M., Trono K., Willems L. Recent advances in BLV research. Viruses, 2015, 7(11): 6080-6088 ( )
  • DOI: 10.3390/v7112929
  • Ikebuchi R., Konnai S., Okagawa T., Nishimori A., Nakahara A., Murata S., Ohashi K. Differences in cellular function and viral protein expression between IgMhigh and IgMlow B-cells in bovine leukemia virus-infected cattle. J. Gen. Virol., 2014, 95: 1832-1842 (doi 10.1099/vir.0.065011-0)
  • DOI: :10.1099/vir.0.065011-0
  • Gillet N.A., Hamaidia M., de Brogniez A., Gutiérrez G., Renotte N., Reichert M., Trono K., Willems L. The bovine leukemia virus microRNAs permit escape from innate immune response and contribute to viral replication in the natural host. Retrovirology, 2015, 12(Suppl. 1): O9 ( )
  • DOI: 10.1186/1742-4690-12-S1-O9
  • Gillet N.A., Hamaidia M., de Brogniez A., Gutiérrez G., Renotte N., Reichert M., Trono K., Willems L. Bovine leukemia virus small noncoding RNAs are functional elements that regulate replication and contribute to oncogenesis in vivo. PLoS Pathog., 2016, 12(4): e1005588 ( )
  • DOI: 10.1371/journal.ppat.1005588
  • Rosewick N., Momont M., Durkin K., Takeda H., Caiment F., Cleuter Y., Vernin C., Mortreux F., Wattel E., Burny A., Georges M., Van den Broeke A. Deep sequencing reveals abundant noncanonical retroviral microRNAs in B-cell leukemia/lymphoma. PNAS USA, 2013, 110(6): 2306-2311 ( )
  • DOI: 10.1073/pnas.1213842110
  • Panei C.J., Takeshima S., Omori T., Nunoya T., Davis W.C., Ishizaki H., Matoba K., Aida Y. Estimation of bovine leukemia virus (BLV) proviral load harbored by lymphocyte subpopulations in BLV-infected cattle at the subclinical stage of enzootic bovine leucosis using BLV-CoCoMo-qPCR. BMC Vet. Res., 2013, 9: 95 ( )
  • DOI: 10.1186/1746-6148-9-95
  • Aida Y., Murakami H., Takahashi M., Takeshima S. Mechanisms of pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia virus. Front. Microbiol., 2013, 4: 328 ( )
  • DOI: 10.3389/fmicb.2013.00328
  • Wallin M., Ekström M., Garoff H. Receptor-triggered but alkylation-arrested env of murine leukemia virus reveals the transmembrane subunit in a prehairpin conformation. J. Virol., 2006, 80(19): 9921-9925 ( )
  • DOI: 10.1128/JVI.00380-06
  • de Brogniez A., Mast J., Willems L. Determinants of the bovine leukemia virus envelope glycoproteins involved in infectivity, replication and pathogenesis. Viruses, 2016, 8(4): 88 ( )
  • DOI: 10.3390/v8040088
  • Suzuki T., Matsubara Y., Kitani H., Ikeda H. Evaluation of the d subunit of bovine adaptor protein complex 3 as a receptor for bovine leukaemia virus. J. Gen. Virol., 2003, 84: 1309-1316 ( )
  • DOI: 10.1099/vir.0.18763-0
  • Lavanya M., Kinet S., Montel-Hagen A., Mongellaz C., Battini J.L., Sitbon M., Taylor N. Cell surface expression of the bovine leukemia virus-binding receptor on B and T lymphocytes is induced by receptor engagement. J. Immunol., 2008, 181(2): 891-898 ( )
  • DOI: 10.4049/jimmunol.181.2.891
  • Corredor A.P., Conzalez J., Baquero L.A., Curtidor H., Olaya-Galan N.N., Patarroyo M.A., Gutierrez M.F. In silico and in vitro analysis of boAP3d1 protein interaction with bovine leukaemia virus gp51. PLoS ONE, 2018, 13(6): e0199397 ( )
  • DOI: 10.1371/journal.pone.0199397
  • Ammann S., Schulz A., Krägeloh-Mann I., Dieckmann N.M., Niethammer K., Fuchs S., Eckl K.M., Plank R., Werner R., Altmüller J., Thiele H., Nürnberg P., Bank J., Strauss A., von Bernuth H., Zur Stadt U., Grieve S., Griffiths G.M., Lehmberg K., Hennies H.C., Ehl S. Mutations in AP3D1 associated with immunodeficiency and seizures define a new type of Hermansky-Pudlak syndrome. Blood, 2016, 127(8): 997-1006 ( )
  • DOI: 10.1182/blood-2015-09-671636
  • Suzuki T., Ikeda H., Masse M. Restricted viral cDNA synthesis in cell lines that fail to support productive infection by bovine leukemia virus. Arch. Virol., 2018, 163(9): 2415-2422 ( )
  • DOI: 10.1007/s00705-018-3887-6
  • Dubois N., Marquet R., Paillart J.-C., Bernacchi S. Retroviral RNA dimerization: from structure to functions. Front. Microbiol., 2018, 9: 527 ( )
  • DOI: 10.3389/fmicb.2018.00527
  • Pierard V., Guiguen A., Colin L. et. al. DNA cytosine methylation in the bovine leukemia virus promoter is associated with latency in a lymphoma-derived B-cell line: potential involvement of direct inhibition of cAMP-responsive element (CRE)-binding protein/CRE modulator/activation transcription factor binding. The Journal of Biological Chemistry, 2010, 285(25): 19434-19449 ( )
  • DOI: 10.1074/jbc.M110.107607
  • Arriagada G. Retroviruses and microtubule-associated motor proteins. Cellular Microbiology, 2017, 19(9): e12759 ( )
  • DOI: 10.1111/cmi.12759
  • Polat M., Takeshima S.N., Aida Y. Epidemiology and genetic diversity of bovine leukemia virus. Virol. J., 2017, 14(1): 209 ( )
  • DOI: 10.1186/s12985-017-0876-4
  • Murakami H., Asano S., Uchiyama J., Sato R., Sakaguchi M., Tsukamoto K. Bovine leukemia virus G4 enhances virus production. Virus Res., 2017, 238: 213-217 ( )
  • DOI: 10.1016/j.virusres.2017.07.005
  • Choi E.-A., Hope T.J. Mutational analysis of bovine leukemia virus rex: identification of a dominant-negative inhibitor. J. Virol., 2005, 79(11): 7172-7181 ( )
  • DOI: 10.1128/JVI.79.11.7172-7181.2005
  • Stake M.S., Bann D.V., Kaddis R.J., Parent L.J. Nuclear trafficking of retroviral RNAs and Gag proteins during late steps of replication. Viruses, 2013, 5(11): 2767-2795 ( )
  • DOI: 10.3390/v5112767
  • Rawle D.J., Harrich D. Toward the "unravelling" of HIV: host cell factors involved in HIV-1 core uncoating. PLoS Pathog., 2018, 14(10): e1007270 ( )
  • DOI: 10.1371/journal.ppat.1007270
  • Wanaguru M., Barry D.J., Benton D.J., O’Reilly N.J., Bishop K.N. Murine leukemia virus p12 tethers the capsid-containing pre-integration complex to chromatin by binding directly to host nucleosomes in mitosis. PLoS Pathog., 2018, 14(6): e1007117 ( )
  • DOI: 10.1371/journal.ppat.1007117
  • Maertens G.N. B´-protein phosphatase 2A is a functional binding partner of delta-retroviral integrase. Nucleic Acids Res., 2016, 44(1): 364-376 ( )
  • DOI: 10.1093/nar/gkv1347
  • Wu X., Li Y., Crise B., Burgess S.M., Munroe D.J. Weak palindromic consensus sequences are a common feature found at the integration target sites of many retroviruses. J. Virol., 2005, 79(8): 5211-5214 ( )
  • DOI: 10.1128/JVI.79.8.5211-5214.2005
  • Holman A.G., Coffin J.M. Symmetrical base preferences surrounding HIV-1, avian sarcoma/leukosis virus, and murine leukemia virus integration sites. PNAS USA, 2005, 102(17): 6103-6107 ( )
  • DOI: 10.1073/pnas.0501646102
  • Wu X., Li Y., Crise B., Burgess S.M. Transcription start regions in the human genome are favored targets for MLV integration. Science, 2003, 300(5626): 1749-1751 ( )
  • DOI: 10.1126/science.1083413
  • Mitchell R.S., Beitzel B.F., Schroder A.R., Shinn P., Chinn H., Chen H., Berry C.C., Ecker J.R., Bushman F.D. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol., 2004, 2(8): e234 ( )
  • DOI: 10.1371/journal.pbio.0020234
  • Wang G.P., Ciuffi A., Leipzig J., Berry C.C., Bushman F.D. HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res., 2007, 17(8): 1186-1194 ( )
  • DOI: 10.1101/gr.6286907
  • Lewinski M.K., Yamashita M., Emerman M., Ciuffi A., Marshall H., Crawford G., Collins F., Shinn P., Leipzig J., Hannenhalli S., Berry C.C., Ecker J.R., Bushman F.D. Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog., 2006, 2(6): e60 ( )
  • DOI: 10.1371/journal.ppat.0020060
  • Derse D., Crise B., Li Y., Princler G., Lum N., Stewart C., McGrath C.F., Hughes S.H., Munroe D.J., Wu X. Human T-cell leukemia virus type 1 integration target sites in the human genome: comparison with those of other retroviruses. J. Virol., 2007, 81(12): 6731-6741 ( )
  • DOI: 10.1128/JVI.02752-06
  • Miyasaka T., Oguma K., Sentsui H. Distribution and characteristics of bovine leukemia virus integration sites in the host genome at three different clinical stages of infection. Arch. Virol., 2015, 160(1): 39-46 ( )
  • DOI: 10.1007/s00705-014-2224-y
  • Babii A., Kovalchuk S., Glazko T., Kosovsky G., Glazko V. Helitrons and retrotransposons are co-localized in Bos taurus genomes. Current Genomics, 2017, 18(3): 278-286 ( )
  • DOI: 10.2174/1389202918666161108143909
  • Glazko V.I., Kosovsky G.Yu., Glazko T.T. High density of transposable elements in sequenced sequences in cattle genomes, associated with AGC microsatellites. Global Advanced Research Journal of Agricultural Science, 2018, 7(2): 034-045.
  • Perès E., Blin J., Ricci E.P., Artesi M., Hahaut V., Van den Broeke A., Corbin A., Gazzolo L., Ratner L., Jalinot P., Dodon M.D. PDZ domain-binding motif of Tax sustains T-cell proliferation in HTLV-1-infected humanized mice. PLoS Pathog., 2018, 14(3): e1006933 ( )
  • DOI: 10.1371/journal.ppat.1006933
  • Jiang Q., Wang Y., Hao Y., Juan L., Teng M., Zhang X., Li M., Wang G., Liu Y. miR2 disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res., 2009, 37(Database issue): D98-104 ( )
  • DOI: 10.1093/nar/gkn714
  • Frie M.C., Droscha C.J., Greenlick A.E., Coussens P.M. MicroRNAs encoded by bovine leukemia virus (BLV) are associated with reduced expression of B cell transcriptional regulators in dairy cattle naturally infected with BLV. Front. Vet. Sci., 2018, 4: 245 ( )
  • DOI: 10.3389/fvets.2017.00245
  • Durkin K., Rosewick N., Artesi M., Hahaut V., Griebel P., Arsic N., Burny A., Georges M., Van den Broeke A. Characterization of novel Bovine Leukemia Virus (BLV) antisense transcripts by deep sequencing reveals constitutive expression in tumors and transcriptional interaction with viral microRNAs. Retrovirology, 2016, 13(1): 33 ( )
  • DOI: 10.1186/s12977-016-0267-8
  • Kulkarni A., Bangham C.R.M. HTLV-1: regulating the balance between proviral latency and reactivation. Front. Microbiol., 2018, 9: 449 ( )
  • DOI: 10.3389/fmicb.2018.00449
Еще
Статья обзорная