Климатически адаптивные фасады с автоматической системой управления

Автор: Немова Дарья Викторовна, Бочкарев Сергей Дмитриевич, Андреева Тарасова Дарья Сергеевна

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 2 (100), 2022 года.

Бесплатный доступ

Объект исследования – инновационная система климат-контроля адаптивного фасада с использованием автоматизированной системы управления. Целью данной работы является анализ энергоэффективности инновационной системы управления фасадом. В аналитическом исследовании с использованием Autodesk Insight и Autodesk Green Building Studio были определены неизвестные характеристики климатоадаптивных фасадных конструкций, энергопотребление здания, пиковые нагрузки на системы вентиляции и кондиционирования, а также эффективность затеняющих конструкций, инфильтрация воздуха и др. В аналитическом исследовании на основе трех режимов работы фасадной конструкции были разработаны режимы работы и необходимое оборудование для контроля. Результат применения климатоадаптивного оформления фасада с применением автоматизированной системы управления оказался на 49,3% эффективнее. Среднее потребление энергии на содержание здания с классическим остеклением составило 374 кВт/м2/год, а потребление с климатоадаптивной конструкцией фасада – 374 кВт/м2/год. Отдельно система ACS позволила снизить потребление на 25% или 58 кВт/м2/год по сравнению с двухслойным фасадом.

Еще

Теплогравитационная конвекция, тепломассоперенос, конструктивное энергосбережение, энергоэффективность, вентилируемый воздушный зазор, гидромеханика воздушных потоков, устойчивое строительство, ограждающая конструкция, двухслойный фасад, адаптивный фасад

Еще

Короткий адрес: https://sciup.org/143178772

IDR: 143178772   |   DOI: 10.4123/CUBS.100.6

Список литературы Климатически адаптивные фасады с автоматической системой управления

  • Tabadkani, A., Roetzel, A., Li, H.X., Tsangrassoulis, A.: Simulation-based personalized real-time control of adaptive facades in shared office spaces. Automation in Construction. 138, 104246 (2022). https://doi.org/10.1016/J.AUTCON.2022.104246.
  • Shen, L., Han, Y.: Optimizing the modular adaptive façade control strategy in open office space using integer programming and surrogate modelling. Energy and Buildings. 254, 111546 (2022). https://doi.org/10.1016/J.ENBUILD.2021.111546.
  • Alkhatib, H., Lemarchand, P., Norton, B., O’Sullivan, D.T.J.: Deployment and control of adaptive building facades for energy generation, thermal insulation, ventilation and daylighting: A review. Applied Thermal Engineering. 185, 116331 (2021). https://doi.org/10.1016/J.APPLTHERMALENG.2020.116331.
  • Tabadkani, A., Roetzel, A., Li, H.X., Tsangrassoulis, A.: Design approaches and typologies of adaptive facades: A review. Automation in Construction. 121, 103450 (2021). https://doi.org/10.1016/J.AUTCON.2020.103450.
  • Gloriant, F., Joulin, A., Tittelein, P., Lassue, S.: Using heat flux sensors for a contribution to experimental analysis of heat transfers on a triple-glazed supply-air window. Energy. 215, 119154 (2021). https://doi.org/10.1016/J.ENERGY.2020.119154.
  • Michaux, G., Greffet, R., Salagnac, P., Ridoret, J.B.: Modelling of an airflow window and numerical investigation of its thermal performances by comparison to conventional double and triple-glazed windows. Applied Energy. 242, 27–45 (2019). https://doi.org/10.1016/J.APENERGY.2019.03.029.
  • Zhang, C., Gang, W., Wang, J., Xu, X., Du, Q.: Experimental investigation and dynamic modeling of a triple-glazed exhaust air window with built-in venetian blinds in the cooling season. Applied Thermal Engineering. 140, 73–85 (2018). https://doi.org/10.1016/J.APPLTHERMALENG.2018.05.050.
  • Choi, W., Joe, J., Kwak, Y., Huh, J.H.: Operation and control strategies for multi-storey double skin facades during the heating season. Energy and Buildings. 49, 454–465 (2012). https://doi.org/10.1016/J.ENBUILD.2012.02.047.
  • Santa Cruz Astorqui, J., Porras-Amores, C.: Ventilated Façade with double chamber and flow control device. Energy and Buildings. 149, 471–482 (2017). https://doi.org/10.1016/J.ENBUILD.2017.04.063.
  • Hussain, S., Oosthuizen, P.H.: Validation of numerical modeling of conditions in an atrium space with a hybrid ventilation system. Building and Environment. 52, 152–161 (2012). https://doi.org/10.1016/j.buildenv.2011.12.016.
  • Yu, T., Zhao, J., Zhou, J., Lei, B.: Experimental and numerical studies on dynamic thermal performance of hollow ventilated interior wall. Applied Thermal Engineering. 180, (2020). https://doi.org/10.1016/j.applthermaleng.2020.115851.
  • Giancola, E., Sanjuan, C., Blanco, E., Heras, M.R.: Experimental assessment and modelling of the performance of an open joint ventilated façade during actual operating conditions in Mediterranean climate. Energy and Buildings. 54, 363–375 (2012). https://doi.org/10.1016/j.enbuild.2012.07.035.
  • Sanjuan, C., Sánchez, M.N., Enríquez, R., del Rosario Heras Celemín, M.: Experimental PIV techniques applied to the analysis of natural convection in open joint ventilated facades. Energy Procedia. 30, 1216–1225 (2012). https://doi.org/10.1016/j.egypro.2012.11.134.
  • Choi, W., Joe, J., Kwak, Y., Huh, J.H.: Operation and control strategies for multi-storey double skin facades during the heating season. Energy and Buildings. 49, 454–465 (2012). https://doi.org/10.1016/j.enbuild.2012.02.047.
  • Asadi, S., Hassan, M., Beheshti, A.: Development and validation of a simple estimating tool to predict heating and cooling energy demand for attics of residential buildings. Energy and Buildings. 54, 12–21 (2012). https://doi.org/10.1016/j.enbuild.2012.07.037.
  • Shih, T.H., Liou, W.W., Shabbir, A., Yang, Z., Zhu, J.: A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Computers and Fluids. 24, 227–238 (1995). https://doi.org/10.1016/0045-7930(94)00032-T.
  • Hernández-Pérez, I., Álvarez, G., Xamán, J., Zavala-Guillén, I., Arce, J., Simá, E.: Thermal performance of reflective materials applied to exterior building components - A review. Energy and Buildings. 80, 81–105 (2014). https://doi.org/10.1016/j.enbuild.2014.05.008.
  • Suárez, M.J., Sanjuan, C., Gutiérrez, A.J., Pistono, J., Blanco, E.: Energy evaluation of an horizontal open joint ventilated faade. Applied Thermal Engineering. 37, 302–313 (2012). https://doi.org/10.1016/j.applthermaleng.2011.11.034.
  • Sanjuan, C., Suárez, M.J., González, M., Pistono, J., Blanco, E.: Energy performance of an open-joint ventilated façade compared with a conventional sealed cavity façade. Solar Energy. 85, 1851–1863 (2011). https://doi.org/10.1016/j.solener.2011.04.028.
  • Sanjuan, C., Suárez, M.J., Blanco, E., Heras, M.D.R.: Development and experimental validation of a simulation model for open joint ventilated façades. Energy and Buildings. 43, 3446–3456 (2011). https://doi.org/10.1016/j.enbuild.2011.09.005.
  • Zhang, C., Gang, W., Wang, J., Xu, X., Du, Q.: Numerical and experimental study on the thermal performance improvement of a triple glazed window by utilizing low-grade exhaust air. Energy. 167, 1132–1143 (2019). https://doi.org/10.1016/J.ENERGY.2018.11.076.
  • Sharma, M.K., Preet, S., Mathur, J., Chowdhury, A., Mathur, S.: Exploring the advantages of photo-voltaic triple skin façade in hot summer conditions. Solar Energy. 217, 317–327 (2021). https://doi.org/10.1016/J.SOLENER.2021.02.020.
  • Zhang, T., Tan, Y., Yang, H., Zhang, X.: The application of air layers in building envelopes: A review. Applied Energy. 165, 707–734 (2016). https://doi.org/10.1016/J.APENERGY.2015.12.108.
  • Zhao, H.X., Magoulès, F.: A review on the prediction of building energy consumption. Renewable and Sustainable Energy Reviews. 16, 3586–3592 (2012). https://doi.org/10.1016/j.rser.2012.02.049.
  • Pérez-Lombard, L., Ortiz, J., Pout, C.: A review on buildings energy consumption information. Energy and Buildings. 40, 394–398 (2008). https://doi.org/10.1016/j.enbuild.2007.03.007.
  • Sozer, H.: Improving energy efficiency through the design of the building envelope. Building and Environment. 45, 2581–2593 (2010). https://doi.org/10.1016/j.buildenv.2010.05.004.
  • Zhang, T., Tan, Y., Yang, H., Zhang, X.: The application of air layers in building envelopes: A review. Applied Energy. 165, 707–734 (2016). https://doi.org/10.1016/J.APENERGY.2015.12.108.
  • Zhao, H.X., Magoulès, F.: A review on the prediction of building energy consumption. Renewable and Sustainable Energy Reviews. 16, 3586–3592 (2012). https://doi.org/10.1016/j.rser.2012.02.049.
  • Ginestet, S., Marchio, D., Morisot, O.: Improvement of buildings energy efficiency: Comparison, operability and results of commissioning tools. Energy Conversion and Management. 76, 368–376 (2013). https://doi.org/10.1016/j.enconman.2013.07.057.
  • Capeluto, I.G.: Energy performance of the self-shading building envelope. Energy and Buildings. 35, 327–336 (2003). https://doi.org/10.1016/S0378-7788(02)00105-6.
  • Fang, Z., Li, N., Li, B., Luo, G., Huang, Y.: The effect of building envelope insulation on cooling energy consumption in summer. Energy and Buildings. 77, 197–205 (2014). https://doi.org/10.1016/j.enbuild.2014.03.030.
  • Guo, W., Qiao, X., Huang, Y., Fang, M., Han, X.: Study on energy saving effect of heat-reflective insulation coating on envelopes in the hot summer and cold winter zone. Energy and Buildings. 50, 196–203 (2012). https://doi.org/10.1016/j.enbuild.2012.03.035.
  • Bellia, L., Marino, C., Minichiello, F., Pedace, A.: An overview on solar shading systems for buildings. Energy Procedia. 62, 309–317 (2014). https://doi.org/10.1016/j.egypro.2014.12.392.
  • González, A.B.R., Díaz, J.J.V., Caamaño, A.J., Wilby, M.R.: Towards a universal energy efficiency index for buildings. Energy and Buildings. 43, 980–987 (2011). https://doi.org/10.1016/j.enbuild.2010.12.023.
Еще
Статья научная