Контактные задачи для упругого неоднородного тела с цилиндрической шахтой

Бесплатный доступ

Изучается осесимметричная задача упругого равновесия непрерывно неоднородного пространства с цилиндрической полостью, когда коэффициент Пуассона является произвольной достаточно гладкой функцией радиальной координаты, а модуль сдвига постоянный. При этом модуль упругости Юнга также является переменным по радиальной координате. Предложено общее представление решения, которое приводит к векторному уравнению Лапласа и скалярному уравнению Пуассона, правая часть которого зависит от коэффициента Пуассона. При помощи интегрального преобразования Фурье построены в квадратурах точные общие решения уравнений Лапласа и Пуассона. Получены интегральные уравнения двух осесимметричных контактных задач о взаимодействии поверхности полости (шахты) с жестким цилиндрическим вкладышем, вставленным в нее с натягом. В первой задаче контакт считается абсолютно гладким, для решения интегрального уравнения первого рода относительно контактного давления используется сингулярный асимптотический метод, эффективный для относительно длинных вкладышей. Во второй задаче учитывается шероховатость поверхности шахты, которая моделируется дополнительной прослойкой винклеровского типа, для решения интегрального уравнения второго рода применяется метод коллокации, эффективный для относительно коротких подкрепляющих вкладышей. Контактное давление на границе области контакта имеет характерную корневую особенность в первой задаче и принимает конечное значение во второй задаче. Для однородного материала отмечается близость интегральных характеристик контактных давлений, получаемых в обеих задачах, при малых показателях шероховатости (коэффициентах постели) в определенном диапазоне относительных длин вкладышей. Показано, что учет шероховатости снижает влияние неоднородности на распределение контактных давлений. Расчеты сделаны для случаев, когда коэффициент Пуассона и модуль упругости возрастают или убывают при удалении от поверхности полости.

Еще

Контактные задачи, теория упругости, неоднородное тело, цилиндрическая полость, асимптотический метод, шероховатость

Короткий адрес: https://sciup.org/146281890

IDR: 146281890   |   DOI: 10.15593/perm.mech/2018.4.18

Список литературы Контактные задачи для упругого неоднородного тела с цилиндрической шахтой

  • Axisymmetric contact problem of the theory of elasticity for inhomogeneous layers / A.S. Vasiliev, S.S. Volkov, S.M. Aizikovich, Y.-R. Jeng // ZAMM. - 2014. - Vol. 94. - No. 9 - P. 705-712. DOI: 10.1002/zamm.201300067
  • Айзикович С.М., Васильев А.С., Волков С.С. Осесимметричная контактная задача о вдавливании конического штампа в полупространство с неоднородным по глубине покрытием // Прикладная математика и механика. - 2015. - Т. 79, вып. 5. - С. 710-716.
  • Axisymmetric problem on the indentation of a hot circular punch into an arbitrarily non-homogeneous half-space / L.I. Krenev, S.M. Aizikovich, Y.V. Tokovyy, Y.-C. Wang // International Journal of Solids and Structures. - 2015. - Vol. 59 - P. 18-28. DOI: 10.1016/j.ijsolstr.2014.12.017
  • Напряженно-деформированное состояние упругого мягкого функционально-градиентного покрытия при внедрении сферического индентора / С.С. Волков, А.С. Васильев, С.М. Айзикович, Н.М. Селезнев, А.В. Леонтьева // Вестник Пермского национального исследовательского политехнического университета. Механика. - 2016. - № 4. - С. 20-34. DOI: 10.15593/perm.mech/2016.4.02
  • Torsion of a circular punch attached to an elastic half-space with a coating with periodically depth-varying elastic properties / A.S. Vasiliev, M.V. Swain, S.M. Aizikovich, E.V. Sadyrin // Archive of Applied Mechanics. - 2016. - Vol. 86. - No. 7 - P. 1247-1254. DOI: 10.1007/s00419-015-1089-1
Еще
Статья научная