Красные пигменты в погребениях эпохи бронзы на Северном Кавказе: методика идентификации признаков термической обработки минерального железосодержащего сырья

Автор: Калинин Павел Иванович, Трифонов Виктор Анатольевич, Шишлина Наталья Ивановна, Алексеев Андрей Олегович

Журнал: Вестник ВолГУ. Серия: История. Регионоведение. Международные отношения @hfrir-jvolsu

Рубрика: Междисциплинарные исследования

Статья в выпуске: 3 (51), 2018 года.

Бесплатный доступ

Охра - это природный пигмент желтого или красного цвета, преимущественно состоящий из минералов железа. Наряду с определением источника происхождения минеральных красителей, одной из главных проблем изучения природных пигментов в археологии является вопрос происхождения так называемой красной охры, изготовленной на основе гематита. Для проверки гипотезы об изготовлении красной охры путем термической переработки железистых минералов исследовали 3 образца охр из погребений эпохи ранней бронзы, расположенных в Республике Адыгея и Краснодарском крае. Для идентификации признаков термической обработки охр был разработан комплексный анализ с применением рентгеновской дифрактометрии, элементного анализа, инфракрасной спектроскопии и анализа микроструктуры. В образце из погребения эпохи бронзы у ст-цы Казанская выявлены признаки термической обработки минерального пигмента. Форма и размер кристаллов гематита в погребении у ст-цы Ладожская указывают на отсутствие его термической обработки и эндогенное происхождение. В образце из ст-цы Новосвободная не обнаружено признаков обжига, а микроструктура пигмента указывает на осадочное происхождение минералов железа, из которых он состоит. Установлено, что цвет пигментов не зависит от процента содержания в них железа. Наиболее значимым является наличие и соотношение гематита и гетита в пигменте, а также состав примесей других минералов в конечном продукте. Вклад авторов: П.И. Калинин - разработка и проведение комплексного анализа свойств пигментов, интерпретация данных, обзор литературы, написание текста статьи; В.А. Трифонов - определение археологического контекста, интерпретация данных, написание статьи и внесение принципиальных изменений, одобрение окончательной версии; Н.И. Шишлина - предоставление образцов для анализа, интерпретация данных, внесение принципиальных изменений в текст статьи; А.О. Алексеев - интерпретация минералогического анализа, внесение принципиальных изменений в текст статьи.

Еще

Пигменты, гематит, гетит, северный кавказ, майкопская культура, охры, обжиг, анализы

Короткий адрес: https://sciup.org/14972517

IDR: 14972517   |   DOI: 10.15688/jvolsu4.2018.3.7

Текст научной статьи Красные пигменты в погребениях эпохи бронзы на Северном Кавказе: методика идентификации признаков термической обработки минерального железосодержащего сырья

DOI:

Курганы и широкое использование в погребениях красной минеральной краски еще в конце XIX в. превратились в символы культур эпохи бронзы в южнорусских степях и на Северном Кавказе [9]. В ходе изучения состава красок красных оттенков было установлено, что чаще всего они представляют разновидности соединений на основе железа, и в археологии за ними закрепилось общее название «охра». Как правило, полагали, что «охры» являются не требующими какой-либо дополнительной обработки природными минералами, а их химический состав может прямо указывать на область происхождения [1].

Недавние исследования показали, что краски на основе окислов железа являются продуктом пиротехнической обработки сырья, содержащим гетит и гематит. При ограниченном количестве источников готовых природных пигментов красных оттенков массовый и регулярный спрос на красную охру, скорее всего, удовлетворялся за счет ее производства из доступных железистых минералов [4]. Химический и минеральный состав конечного продукта зависел как от состава исходного минерального сырья, так и от состава глиняного наполнителя для изготовления стандартизированных брусков краски, в которых она поступала на рынок обмена и к конечному потребителю.

Основная цель настоящего исследования состоит в дальнейшей разработке комплексной методики идентификации признаков термической переработки минерального железосодержащего сырья с использованием элементного анализа, рентгеновской дифрактометрии, инфракрасной спектроскопии и анализа микроструктуры пигмента [4, с. 38].

Методы

В природе существует множество горных пород, обогащенных окислами (гематит Fe2O3) и гидроокислами (гетит FeOOH) железа. Охра – это природный пигмент желтого или красного цвета, преимущественно состоящий из минералов железа. Наряду с определением источника происхождения минеральных красителей, одной из главных проблем изучения при- родных пигментов в археологии является вопрос происхождения так называемой красной охры, изготовленной на основе гематита (Fe2O3). Гематит – широко распространенный минерал, который встречается повсеместно и нередко образует большие скопления и рудные залежи. Однако его можно получить еще одним известным с древних времен способом – путем обжига гетита (FeOOH), который является основным компонентом «желтых» охр. Гетит не менее распространенный минерал, чем гематит. Встречается в виде продукта выветривания; образуется при нормальных температуре и давлении из других железосодержащих минералов (сидерита, магнетита, пирита и др.) либо как продукт осаждения в болотах и природных источниках.

Переход гетита в гематит идет в соответствии со следующей химической реакцией:

FeOOH Fe2O3 + H2O.

В почвоведении и археологии долгое время считалось, что буроокрашенный гетит может переходить в красноокрашенный гематит непосредственно после погребения с потерей конституционной воды при высоких температурах почвы [1, с. 163]. Однако с появлением методов мессбауэровской спектрографии, электронной микроскопии и рентгеновской дифрактометрии возможность таких переходов была отвергнута. Формирование гидрогематита возможно только через фазу ферригидрита. Ферригидрит (Fe2O3 ∙ 2FeOOH ∙ 2,6H2O) – эфемерный гидроксид, в почве он постепенно превращается в более стабильные формы: гетит или гематит в зависимости от условий. Подробная схема оксидогенеза железа была составлена Швертманном еще в 1989 г. с дополнениями; за последние два десятилетия исследований в ней представлено взаимное превращение минералов железа: гематита, гетита, ферригидрита, маггемита, лепидокрокита [11]. В частности, в почвенных исследованиях выявлено, что красная окраска почвенной массы появляется благодаря присутствию гематита и тесно коррелирует с его относительным содержанием в сумме минералов «гетит + гематит». Вместе с тем обнаружена невозможность непосредственного перехода этих минералов друг в друга в зоне гиперге- неза. Также невозможно формирование гематита в гипергенных температурных условиях непосредственно из железосодержащих растворов. Лабораторные исследования показывают, что прямая трансформация гетита в гематит требует температуры около 400 °С, а обратный переход происходит в присутствии воды при температуре около 130 °С, что в природных условиях практически невозможно. Универсальным механизмом для перехода одного оксида железа в другой в почвах является переход железа в раствор и образование из него нового соединения [2].

Определение признаков гематита, полученного путем обжига, до сих пор является нерешенной задачей, над которой работают многие исследователи. Гетит полностью разрушается и начинает переходить в гематит при температуре 340 °С [3]. Проведенные нами эксперименты по прокаливанию гетита до температуры 600, 700, 800 и 900 °С показывают полную трансформацию гетита в гематит при 800 °С [4, с. 39]. При этой же температуре образец приобретает ярко-красный цвет (5YR 5/6 по шкале Манселла). Однако химический состав и свойства природного и прокаленного гематита одинаковы, рентгеновские дифрактог-раммы также не выявляют отличий. Кроме того, решение задачи по установлению признаков термической обработки пигментов значительно усложняется их полиминеральным составом. Минералы, входящие в состав охр, могли попасть туда на любом этапе их изготовления, погребения или пробоотбора. Наличие в образце гематита или гидрогематита само по себе не является доказательством обжига, так как эти минералы широко распространены в осадочных породах, где они одновременно образуются в результате выветривания первичных минералов и выпадения из растворов [12]. К тому же эти минералы могли попасть в пигмент при его смешивании с почвой или глинистыми минералами. По этой же причине совместное обнаружение в охре гетита и гематита не служит доказательством отсутствия термической обработки образца, так как гетит является не менее распространенным минералом, чем гематит.

Поэтому сам по себе минеральный, а соответственно, и элементный анализ не может являться надежным доказательством наличия технологической обработки природного минерала. Для получения надежных доказательств термического воздействия необходимо применять комплексный подход с использованием рентгеновской дифрактометрии, элементного анализа, инфракрасной спектроскопии и анализа микроструктуры пигмента.

В данном исследовании определение химического состава образцов, учитывая малые навески, проводилось с использованием микроанализатора (ЭДС) сканирующего электронного микроскопа SEM TESCAN VEGA 3 LMU при ускоряющем высоком напряжении 30 keV, в режиме SE (Secondary Electron Image) и высокого вакуума (HV). Интегрированный в микроскоп ЭДС-энергодисперсионный спектрометр (Oxford Instruments) и программа AZtec использовались для получения количественных результатов элементного анализа образцов пигментов.

Минералогический состав валовых образцов охр изучен методом рентгеновской дифрактометрии на приборе D2 PHASER (Bruker), CuKα излучение, дифрактограммы получены в интервале 5–65о 2Θ с шагом 0,02о и временем набора 5 с на точке. Образцы приготовлены из спиртовой суспензии. Качественный и полуколичественный фазовый анализ выполнен с применением программы DIFRAC.EVA (BRUKER) c использованием базы данных ICDD PDF2 (Международный центр дифракционных данных – International Centre for Diffraction Data (ICDD)).

ИК-спектры образцов были получены на приборе ИК-Фурье спектрометр «Thermo Scientific Nicolet 6700» в диапазоне 4000– 400 см-1 (техника KBr). Препараты для съемки готовились путем измельчения 1 мг пробы и 199 мг KBr до состояния пудры и дальнейшего прессования твердых проб в таблетки.

Цвет пигментов определялся по цветовой шкале Манселла.

С помощью комплекса инструментальных методов изучены 3 образца пигментов (см. рис. 1):

  • 1.    Погребение эпохи бронзы у ст-цы Ладожская, раскопки Н.И. Веселовского, 1902 г. [8, с. 74–77].

  • 2.    Погребение эпохи бронзы у ст-цы Казанская, раскопки Н.И. Веселовского, 1901 г. [7, с. 66–80].

  • 3.    Образец «краски» с крыши дольмена, относящегося к позднему этапу развития майкопской культуры (новосвободненский вариант). Адыгея, ст-ца Новосвободная (бывшая Царская) – курган 1 (по нумерации Н.И. Веселовского) [6], раскопки ИИМК-ГИМ, 2014 год.

Анализ

Химический состав

Химический состав изученных образцов характеризуется наибольшим содержанием Fe по сравнению с другими элементами (см. табл. 1). Однако значительное содержание Si, Al и Са указывает на наличие в пигментах примесей, которые могли попасть туда как при приготовлении охры, так и в результате пробоотбора. Обращает на себя внимание наличие в образце № 3 Mn ~ 3,12 %, который отсутствует в других пигментах. Не отмечается его присутствие и в известняке, из которого состоит плита с найденной на ней охрой.

Сравнение химического состава и цветовой гаммы изученных образцов (см. рис. 1) позволяет сделать вывод, что цвет пигментов не зависит от процента содержания в них железа. Наиболее значимым является минеральный состав охр.

С помощью сканирующего электронного микроскопа была изучена микроструктура образцов пигментов. В образце № 1 обнаружены характерные кристаллы гематита размером до 5 мкм, имеющие ромбоэдрическую кристаллическую структуру [10] (см. рис. 2). Наличие подобных крупных кристаллов правильной формы является признаком длительного процесса кристаллизации, проходившего в благоприятных условиях. Это подтверждает и минеральный состав, а именно совместное нахождение в нем гетита и гематита (см. табл. 2).

Кроме того, на инфракрасном спектре не отмечается смещение полосы гематита 540 см-1, характерное для гематита, полученного при термической обработке. Все это указывает на отсутствие технологического процесса в изготовлении пигмента № 1. Однако происхождение таких форм кристаллов гематита в зоне гипергенеза или в виде тонкодисперсной примеси в осадочных породах в результате перекристаллизации из ферригидри-та является маловероятным. Первоначальным источником гематита служит закисное железо (Fe2+), которое под воздействием железобактерий (обычно Galionella, Leptothrix, Toxothrix), активных при значениях pH, близких к 6–7, и температурах от 4 до 27 °С, преобразуется в ферригидрит (2,5Fe2O3 ∙ 4,5Н2О).

Рис. 1. Цвет изученных образцов пигментов (по шкале Манселла)

Fig. 1. The color of the studied samples of pigments (based on the Munsell scale)

Таблица 1

Химический состав изученных образцов пигментов

Образец

№ 1

№ 2

№ 3

Fe (%)

26,16

44,20

33,52

Mn (%)

3,12

S (%)

0,69

2,60

Si(%)

13,49

6,10

10,07

Al (%)

8,0

2,50

3,17

Ca (%)

2,10

3,50

1,72

P (%)

1,64

1,00

0,59

K (%)

1,34

0,60

1,12

Ti (%)

0,39

0,30

Mg (%)

0,41

0,20

0,34

Рис. 2. Микроморфология кристаллов гематита из образца пигмента № 1 ( а ), химический состав кристаллов гематита по данным энергодисперсионного спектрометра ( b , d ), инфракрасный спектр гематита ( с )

Fig. 2. Micromorphology of hematite crystals from pigment sample no. 1 ( a ), chemical composition of hematite crystals according to data of the energy-dispersive X-ray spectroscopy ( b , d ), infrared spectrum of hematite ( c )

Таблица 2

Минералогический состав изученных образцов пигментов (полуколичественный)

Образец

№ 1

№ 2

№ 3

Гетит

+

+

Гематит

+

++

+

Манганит

+

Кварц

++

+

++

Тридимит

Альбит

+

+

Микроклин

+

Анортит

+

Каолинит

+

Иллит

+

Мусковит

+

+

Вермикулит

+

Кальцит

+

+

Гипс

+

В окислительных условиях и в присутствии аморфного кремнезема ферригидрит переходит в гематит. Новообразованные кристаллы гематита имеют размер около 10–40 нм (средние значения около 20 нм) [5], что значительно меньше кристаллов, обнаруженных в об- разце № 1. Такой размер и правильная форма кристаллов гематита могут говорить о его эндогенном происхождении и возможной добыче из рудного месторождения.

Образец № 2 характеризуется достаточной однородностью минерального состава, и основной фазой в нем является гематит (см. табл. 2). Кроме того, в его составе присутствуют только устойчивые к температурному воздействию минералы. Исключение составляет гипс, но этот минерал мог попасть в состав пигмента из почвы.

Инфракрасный спектр данного образца характеризуется смещением полосы гематита 540 см-1 в сторону высоких частот до 575 см-1, что характерно для протогематита при прокаливании его до 700 °С [13, p. 398]. Исследование микроморфологии образца показало, что кристаллы железа здесь образуют плотные скопления и их размеры значи- тельно более мелкие по сравнению с кристаллами в образцах других пигментов (см. рис. 3). Отмечается «вплавление» биолитов в общую массу кристаллов железа. Наличие таких структур в образцах охр может являться признаком их термического производства. Совокупность данных признаков позволяет предположить, что гематит в образце № 2 подвергался термической обработке.

Минеральный состав образца № 3 характеризуется преобладанием совместного нахождения гетита и гематита (см. табл. 2). Причем количество первого несколько больше. Характерной чертой является наличие глинистых минералов, также манганита, который, по всей видимости, и придает пигменту более темный оттенок. Этот минерал не входит в состав плиты дольмена, на которой была найдена охра, не встречается он и в других изученных пигментах с этого сооружения. Ман-

Рис. 3. Микроморфология образца пигмента № 2 ( а ), химический состав биолита по данным энергодисперсионной рентгеновской спектроскопии ( b ), инфракрасный спектр гематита ( с ) Fig. 3. Micromorphology of the pigment sample no. 2 ( a ), the chemical composition of the bioliths according to data of the energy-dispersive X-ray spectroscopy ( b ), the infrared spectrum of hematite ( c )

ганит начинает разрушаться при температуре 300 °С, гетит – при 340 °С.

Наличие в образце двух неустойчивых к термической обработке минералов гетита и манганита, так же как и глинистых минералов (каолинита и иллита), а также отсутствие уплотнения кристаллов вещества и признаков вплавления биолитов (рис. 4) может свидетельствовать о том, что процесса обжига при приготовлении пигмента не происходило. Кроме того, при микроморфологическом анализе образца не обнаружено крупных кристаллов гематита, что может говорить о его осадочном происхождении или принадлежности к зоне гипергенеза.

Резул ьтаты

  • 1.    Для получения надежных доказательств термического воздействия на пигменты необходимо применять комплексный подход с использованием рентгеновской дифрактометрии, элементного анализа, инфракрасной спектроскопии и анализа микроструктуры пигмента.

  • 2.    Форма и размер кристаллов гематита в погребении у ст-цы Ладожская (образец № 1) указывают на отсутствие его термической обработки и эндогенное происхождение (возможно, из рудного месторождения).

  • 3.    В образце из погребения у ст-цы Казанская (образец № 2) выявлены признаки термической обработки минерального пигмента.

  • 4.    В образце из ст-цы Новосвободная (образец № 3) не обнаружено признаков обжига, а микроструктура пигмента указывает на осадочное происхождение минералов железа, из которых он состоит.

  • 5.    Сравнение химического состава и цветовой гаммы изученных образцов позволяет сделать вывод, что цвет пигментов не зависит от количества содержания в них железа. Наиболее значимым является наличие и соотношение гематита и гетита в пигменте, а также состав примесей других минералов в исходном продукте.

Список литературы Красные пигменты в погребениях эпохи бронзы на Северном Кавказе: методика идентификации признаков термической обработки минерального железосодержащего сырья

  • Балабина, В. И. Исследование охр из погребений эпохи бронзы в низовьях Дона/В. И. Балабина, Л. А. Борисенок, Л. К. Яхонтова//Советская Археология. -1990. -№ 1. -С. 154-166.
  • Водяницкий, Ю. Н. Оксиды железа и их роль в плодородии почв/Ю. Н. Водяницкий. -М.: Наука, 1989. -160 с.
  • Горбунов, Н. И. Методы минералогического и микроморфологического изучения почв/Н. И. Горбунов. -М.: Наука, 1971. -175 с.
  • Дольмены станицы Царской: красные пигменты как продукт производства и потребления/В. А. Трифонов, Н. И Шишлина, П. И. Калинин, А. О. Алексеев, Е. С. Богомолов//Российская археология. -2015. -№ 4. -С. 35-47.
  • Магнетизм почв/В. Ф. Бабанин, В. И. Трухин, Л. O. Карпачевский, A. B. Иванов, В. В. Морозов. -М.; Ярославль: ЯГТУ, 1995. -222 с.
  • Отчет Императорской археологической комиссии за 1898 год. -СПб., 1901. -191 с.
  • Отчет Императорской археологической комиссии за 1901 год. -СПб., 1903. -198 с.
  • Отчет Императорской археологической комиссии за 1902 год. -СПб., 1904. -199 с.
  • Спицын, А. А. Курганы с окрашенными костяками/А. А. Спицын//Записки Русского Археологического Общества. -1899. -Т. XI. -Вып. 1/2. -Новая серия. -С. 53-133.
Еще
Статья научная