Круговая поляризация до и после острого фокуса для света с линейной поляризацией

Автор: Стафеев Сергей Сергеевич, Зайцев Владислав Дмитриевич, Котляр Виктор Викторович

Журнал: Компьютерная оптика @computer-optics

Рубрика: Дифракционная оптика, оптические технологии

Статья в выпуске: 3 т.46, 2022 года.

Бесплатный доступ

Рассмотрена острая фокусировка света с линейной поляризацией. С помощью формализма Ричардса-Вольфа показано, что до и после плоскости фокуса имеются области, в которых поляризация круговая (эллиптическая). При переходе через плоскость фокуса направление вращения вектора поляризации в этих областях меняется на противоположное. Если до фокуса в некоторой области была левая круговая поляризация, то в самом фокусе в этой области будет линейная поляризация, а после фокуса в аналогичной области будет правая круговая поляризация. Этот эффект позволяет использовать линейно поляризованный свет для вращения вокруг своего центра масс диэлектрических микрочастиц с небольшим поглощением.

Еще

Линейная и круговая поляризации, острая фокусировка, формулы ричардса-вольфа, вектор стокса, спиновой угловой момент

Короткий адрес: https://sciup.org/140294990

IDR: 140294990   |   DOI: 10.18287/2412-6179-CO-1070

Список литературы Круговая поляризация до и после острого фокуса для света с линейной поляризацией

  • Richards B, Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc R Soc A 1959; 253(1274): 358-379. DOI: 10.1098/rspa.1959.0200.
  • Yuan GH, Wei SB, Yuan X-C. Nondiffracting transversally polarized beam. Opt Lett 2011; 36(17): 34793481. DOI: 10.1364/0L.36.003479.
  • Ping C, Liang Ch, Wang F, Cai Y. Radially polarized multi-Gaussian Schell-model beam and its tight focusing properties. Opt Express 2017: 25(26): 32475-32490. DOI: 10.1364/0E.25.032475.
  • Grosjean T, Gauthier I. Longitudinally polarized electric and magnetic optical nano-needles of ultra high lengths. Opt Commun 2013; 294: 333-337. DOI: 10.1016/j.optcom.2012.12.032.
  • Wang H, Shi L, Lukyanchuk B, Sheppard, C, Chong CT. Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nat Photonics 2008; 2(8): 501-505. DOI: 10.1038/nphoton.2008.127.
  • Lin J, Chen R, Jin P, Cada M, Ma Y. Generation of longitudinally polarized optical chain by 4n focusing system. Opt Commun 2015; 340: 69-73. DOI: 10.1016/j.optcom.2014.11.095.
  • Zhuang, J, Zhang L, Deng D. Tight-focusing properties of linearly polarized circular Airy Gaussian vortex beam. Opt Lett 2020; 45(2): 296. DOI: 10.1364/OL.45.000296.
  • Lyu Y, Man Z, Zhao R, Meng P, Zhang W, Ge X, Fu S. Hybrid polarization induced transverse energy flow. Opt Commun 2021; 485: 126704. DOI: 10.1016/j.optcom.2020.126704.
  • Li H, Wang C, Tang M, Li X. Controlled negative energy flow in the focus of a radial polarized optical beam. Opt Express 2020; 28(13): 18607-18615. DOI: 10.1364/OE.391398.
  • Kotlyar VV, Stafeev SS, Nalimov AG. Energy backflow in the focus of a light beam with phase or polarization singularity. Phys Rev A 2019; 99(3): 033840. DOI: 10.1103/PhysRevA.99.033840.
  • Bomzon Z, Gu M, Shamir J. Angular momentum and geometrical phases in tight-focused circularly polarized plane waves. Appl Phys Lett 2006; 89(24): 241104. DOI: 10.1063/1.2402909.
  • Aiello A, Banzer P, Neugebauer M, Leuchs G. From transverse angular momentum to photonic wheels. Nat Photonics 2015; 9(12): 789-795. DOI: 10.1038/nphoton.2015.203.
  • Li M, Cai Y, Yan S, Liang Y, Zhang P, Yao B. Orbit-induced localized spin angular momentum in strong focusing of optical vectorial vortex beams. Phys Rev A 2018; 97(5): 053842. DOI: 10.1103/PhysRevA.97.053842.
  • Zhao Y, Edgar JS, Jeffries GDM, McGloin D, Chiu DT. Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys Rev Lett 2007; 99(7): 073901. DOI: 10.1103/PhysRevLett.99.073901.
  • Gross H, Singer W, Totzeck M. Handbook of optical systems; Vol 2. Wiley-VCH; 2005. ISBN: 978-3-52740378-3.
  • Golovashkin DL, Kazanskiy NL. Mesh Domain Decomposition in the Finite-Difference Solution of Maxwell's Equations. Optical Memory & Neural Networks (Information Optics) 2009; 18(3). 203-211. DOI: 10.3103/S1060992X09030102.
Еще
Статья научная