Landscape approach to normalized difference vegetation index forecast by artificial neural network: example of Diyala river basin
Автор: Alhumaima A.S., Abdullaev S.M.
Рубрика: Информатика и вычислительная техника
Статья в выпуске: 3 т.19, 2019 года.
Бесплатный доступ
This study examines the perspective of artificial neural networks for forecast Normalized Differential Vegetation Index (NDVI) on Diyala River basin and also how information about of bioclimatic landscapes will affect to forecasting performance. To do this, in the first stage of the experiment, a total of 20 perceptrons with different one hidden layer architectures were trained with site-specific variables (latitude, longitude, minimal, maximal and mean height, landcover type) and seasonal meteorological variables (precipitation sum, and minimal, maximal and average daily temperatures) by error back propagation algorithm on the data of 2000-2010 years and tested on data for 2011-2016 years. It has been shown that the best performance, with determination coefficient R2 of 0.78, was achieved by perceptron model with 12 hidden neurons the activated by logistic activation function and hyperbolic tangential activation of output value of NDVI. The large spatial heterogeneity of forecasting performance of the best perceptron was detected: in upper part of basin characterized according to Köppen - Trewartha bioclimatic classification, as landscapes of temperate mountain climate and the subtropical climate with dry summers, R2 was 0.76-0.80, whereas in dry steppe landscapes and semi-desert landscapes of Diyala downstream R2 was 0.6-0.7. The second stage of experiments with 20 models of perceptrons where the type of landscape was added as input variable or where 150 individual perceptrons were selected for each landscape, have shown that these approaches allows to R2 increase up to 0.73-0.85. However, the strong contrast between characteristics of individual models complicates their use in the practice and requires to finding of new forecasting approaches.
Remote sensing, ndvi forecast, perceptron, bioclimatic landscapes, precipitation, temperature, climatic response, прогноз ndvi
Короткий адрес: https://sciup.org/147232268
IDR: 147232268 | DOI: 10.14529/ctcr190301
Список литературы Landscape approach to normalized difference vegetation index forecast by artificial neural network: example of Diyala river basin
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation / C.J. Tucker // Remote Sensing of Environment. - 1979. - Vol. 8, no. 2. - P. 127-150.
- Sensitivity of Climate to Changes in NDVI / L. Bounoua, G.J. Collatz, S.O. Los et al. // Journal of Climate. - 2000. - Vol. 13, no. 13. - P. 2277-2292. (2000)0132.0.CO;2 DOI: 10.1175/1520-0442
- Spatial relationship between climatologies and changes in global vegetation activity / R. de Jong, M.E. Schaepman, R. Furrer et al. // Global Change Biology. - 2013. - Vol. 19, no. 6. - P. 1953-1964. DOI: 10.1111/gcb.12193
- Ground- and satellite-based evidence of the biophysical mechanisms behind the greening Sahel / M. Brandt, Ch. Mbow, A.A. Diouf et al. // Global Change Biology. - 2015. - Vol. 21, no. 4. - P. 1610-1620. DOI: 10.1111/gcb.12807
- MODIS EVI-based net primary production in the Sahel 2000-2014 / J. Ardöa, T. Tagesson, J. Sadegh, A. Khatir // International Journal of Applied Earth Observation and Geoinformation. - 2018. - Vol. 65. - P. 35-45. DOI: 10.1016/j.jag.2017.10.002
- Potential impacts of climate change on vegetation dynamics in Central Asia / Zhi Li, Yaning Chen, Weihong Li et al. // Journal of Geophysical Research: Atmosphers. - 2015. - Vol. 120. - P. 12345-12356.
- DOI: 10.1002/2015JD023618
- Assessment of Desertification Risk in Central Asia and Kazakhstan Using NOAA AVHRR NDVI and Precipitation Data / P.A. Propastin, M. Kappas, S. Erasmi, N.R. Muratova // Современные проблемы дистанционного зондирования Земли из космоса. - 2007. - Т. 4, № 2. - С. 304-313.
- Spatio-temporal characteristics of vegetation cover of arid and semiarid climatic zones in Mongolia on the basis of vegetation index NDVI / A.K. Tulokhonov, B.Z. Tsydypov, A.L. Voloshin et al. // Arid Ecosystems. - 2014. - Vol. 4, no. 2. - P. 61-68.
- DOI: 10.1134/S2079096114020115
- Xu, Y. NDVI-based vegetation responses to climate change in an arid area of China / Y. Xu, J. Yang, Y. Chen // Theoretical and Applied Climatology. - October 2016. - Vol. 126, no. 1-2. - P. 213-222.
- DOI: 10.1007/s00704-015-1572-1
- Chu, D. Sensitivity of Normalized Difference Vegetation Index (NDVI) to Seasonal and Interannual Climate Conditions in the Lhasa Area, Tibetan Plateau, China / D. Chu, L. Lu, T. Zhang // Arctic, Antarctic, and Alpine Research. - 2007. - Vol. 39, no. 4. - P. 635-641.
- DOI: 10.1657/1523-0430(07-501)[CHU]2.0.CO;2
- Использование данных NOAA-AVHRR для выявления многолетней динамики растительности Северной Евразии / М.А. Медведева, И.Ю. Савин, С.А. Барталев, Е.А. Лупян // Исследование Земли из космоса. - 2011. - № 4. - С. 55-62.
- Елсаков, В.В. Пространственная и межгодовая неоднородность изменений растительного покрова тундровой зоны Евразии по материалам съёмки MODIS 2000-2016 гг. / В.В. Елсаков // Современные проблемы дистанционного зондирования Земли из космоса. - 2017. - Т. 14, № 6. - С. 56-72.
- DOI: 10.21046/2070-7401-2017-14-6-56-72
- Тельнова, Н.О. Выявление и картографирование многолетних трендов NDVI для оценки вклада изменений климата в динамику биологической продуктивности агроэкосистем лесостепной и степной зон Северной Евразии / Н.О. Тельнова // Современные проблемы дистанционного зондирования Земли из космоса. - 2017. - Т. 14, № 6. - С. 97-107.
- DOI: 10.21046/2070-7401-2017-14-6-97-107
- Использование данных дистанционного зондирования при моделировании водного и теплового режимов сельских территорий / Е.Л. Музылев, З.П. Старцева, А.Б. Успенский и др. // Современные проблемы дистанционного зондирования Земли из космоса. - 2017. - Т. 14, № 6. - С. 108-136.
- DOI: 10.21046/2070-7401-2017-14-6-108-136
- Халил, З.Х. Диагностика ландшафтов провинции Эль-Дивания (Ирак) по мультиспектральным снимкам Landsat-8 / З.Х. Халил, С.М. Абдуллаев // Вестник ЮУрГУ. Серия «Вычислительная математика и информатика». - 2018. - Т. 7, № 3. - С. 5-18.
- DOI: 10.14529/cmse180301
- Schiraldi, N.J. The Evolution of Agricultural Drought Transition Periods in the U.S. Corn Belt / N.J. Schiraldi, P.E. Roundy // Monthly Weather Review. - 2017. - Vol. 145, no. 2. - P. 451-472.
- DOI: 10.1175/MWR-D-16-0225.1
- Sruthi, S. Agricultural Drought Analysis Using the NDVI and Land Surface Temperature Data; a Case Study of Raichur District / S. Sruthi, M.A.M. Aslam // Aquatic Procedia. - 2015. - Vol. 4. - P. 1258-1264.
- DOI: 10.1016/j.aqpro.2015.02.164
- Прогнозирование урожайности зерновых и зернобобовых культур в Центральных Черноземных областях на основе комплексирования наземных и спутниковых данных / А.И. Страшная, Л.Л. Тарасова, Н.А. Богомолова и др. // Труды Гидрометеорологического научно-исследовательского центра Российской Федерации. - 2015. - № 353. - С. 128-153.
- Станкевич, С.А. Картирование изменений растительного покрова Киевской агломерации на основе долговременных временных рядов многоспектральных космических снимков Landsat / С.А. Станкевич, И.А. Пестова // Современные проблемы дистанционного зондирования Земли из космоса. - 2014. - Т. 11, № 2. - С. 187-196.
- Analysing the urban vegetation effect using satellite imagery for Budapest / J. Bartholy, R. Pongracz, Z. Dezso, C. Fricke // (ICUC9 - 9th) International Conference on Urban Climate jointly with 12th Symposium on the Urban Environment. - 2015. - P. 1-4.
- Maxwell, A.E. Implementation of machine-learning classification in remote sensing: an applied review / A.E. Maxwell, T.A. Warner, F. Fang // International Journal of Remote Sensing. - 2018. - Vol. 39, no. 9. - P. 2784-2817.
- DOI: 10.1080/01431161.2018.1433343
- Exploring spatially variable relationships between NDVI and climatic factors in a transition zone using geographically weighted regression / Zhiqiang Zhao, Jiangbo Gao, Yanglin Wang et al. // Theoretical and Applied Climatology. - 2015. - Vol. 120, no. 3-4. - P. 507-519.
- DOI: 10.1007/s00704-014-1188-x
- Алгоритм оценки долговременных вариаций MODIS NDVI / Б.В. Содномов, А.А. Аюржанаев, Б.З. Цыдыпов, Е.Ж. Гармаев // Журнал Сибирского федерального университета. Серия: Техника и технологии. - 2018. - Т. 11, № 1. - С. 61-68
- DOI: 10.17516/1999-494X-0009
- Катаев, М.Ю. Aнализ трендов временных рядов вегетационного индекса NDVI / М.Ю. Катаев, А.А. Бекеров, П.В. Шалда // Доклады Томского государственного университета систем управления и радиоэлектроники. - 2017. - Т. 20, № 1. - С. 81-84.
- DOI: 10.21293/1818-0442-2017-20-1-81-84
- Vegetation response to climate conditions based on NDVI simulations using stepwise cluster analysis for the Three-River Headwaters region of China / Y. Zheng, J. Han, Y. Huang et al. // Ecological Indicators. - 2018. - Vol. 92. - P. 18-29.
- DOI: 10.1016/j.ecolind.2017.06.040
- Stepchenko, A. NDVI Short-Term Forecasting Using Recurrent Neural Networks / A. Stepchenko, J. Chizhov // Proceedings of the 10th International Scientific and Practical Conference, 2015. Environment. Technology. Resources, Rezekne, Latvia. - 2015. - Vol. III. - P. 180-185.
- DOI: 10.17770/etr2015vol3.167
- Das, M. Deep-STEP: A Deep Learning Approach for Spatiotemporal Prediction of Remote Sensing Data / M. Das, S.K. Ghosh // IEEE Geoscience and Remote Sensing Letters. - 2016. - Vol. 13, no. 12. - P. 1984-1988.
- DOI: 10.1109/LGRS.2016.2619984
- Nay, J. A machine-learning approach to forecasting remotely sensed vegetation health / J. Nay, E. Burchfield, J. Gilligan // International Journal of Remote Sensing. - 2018. - Vol. 39, no. 6. - P. 1800-1816.
- DOI: 10.1080/01431161.2017.1410296
- Climate Change: The Uncertain Future of Tigris River Tributaries' Basins / N. Adamo, N. Al-Ansari, V.K. Sissakian et al. // Journal of Earth Sciences and Geotechnical Engineering. - 2018. - Vol. 8, no. 3. - P. 75-93.
- Николаев, В.А. Ландшафтоведение: семинарские и практические занятия / В.А. Николаев. - 2-е изд. - М.: Географический фак. МГУ, 2006. - 208 с.
- Абдуллаев, С.М. Классификация и оценка состояния ландшафтов в зоне влияния проектируемой Южно-Уральской АЭС / С.М. Абдуллаев, О.Ю. Ленская, И.В. Грачева // Вестник Воронежского государственного университета. Серия: Геоэкология и география. - 2010. - № 2. - С. 60-65.
- ГОСТ 17.8.1.02-88. Охрана природы. Ландшафты. Классификация, Охрана природы. Nature protection. Landscapes. Classification. Сб. ГОСТов. - М.: ИПК Изд-во стандартов, 2002.
- UN-ESCWA and BGR (United Nations Economic and Social Commission for Western Asia; Bundesanstalt für Geowissenschaften und Rohstoffe), Inventory of Shared Water Resources in Western Asia. Beirut, 2013.
- Japan's Ministry of Economy, Trade and Industry (METI), and U.S. National Aeronautics and Space Administration (NASA). ASTER Global Digital Elevation Model [Data set]. NASA EOSDIS Land Processes DAAC. 2009.
- DOI: 10.5067/ASTER/ASTGTM.002
- Global Land Cover SHARE (GLC-SHARE) database Beta-Release Version 1.0 / J. Latham, R. Cumani, I. Rosati, M. Bloise. - Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, 2014. - P. 1-39. - http://www.fao.org/uploads/media/glc-share-doc.pdf.
- Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 [Data set] / K. Didan. - NASA EOSDIS LP DAAC, 2015.
- DOI: 10.5067/MODIS/MOD13Q1.006
- Harris, I.C. University of East Anglia Climatic Research Unit (CRU). CRU TS4.01: Climatic Research Unit (CRU) Time-Series (TS) version 4.01 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901 - Dec. 2016) / I.C. Harris, P.D. Jones. - Centre for Environmental Data Analysis (CEDA), 2017.
- DOI: 10.1002/joc.3711
- Willmott, C.J. Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1900 - 2017). Version 5.01 / C.J. Willmott, K. Matsuura. - University of Delaware. Department of Geography, 2019. - http://climate.geog.udel.edu/~climate
- Fensholt, R. Evaluation of Earth Observation based global long term vegetation trends - Comparing GIMMS and MODIS global NDVI time series / R. Fensholt, S.R. Proud // Remote Sensing of Environment. - 2012. - Vol. 119. - P. 131-147.
- DOI: 10.1016/j.rse.2011.12.015
- Automated mapping of vegetation trends with polynomials using NDVI imagery over the Sahel / S. Jamali, J. Seaquist, L. Eklundh, J. Ardö // Remote Sensing of Environment. - 2014. - Vol. 141. - P. 79-89.
- DOI: 10.1016/j.rse.2013.10.019
- Кислов, А.В. Климатология / А.В. Кислов. - М.: Академия, 2011. - 224 с.
- Climate classification revisited: From Köppen to Trewartha / M. Belda, E. Holtanová, T. Halenka, J. Kalvová // Climate Research. - 2014. - Vol. 59, no. 1. - P. 1-13.
- DOI: 10.3354/cr01204
- Use of the Köppen - Trewartha climate classification to evaluate climatic refugia in statistically derived ecoregions for the People's Republic of China / B. Baker, H. Diaz, W. Hargrove, F. Hoffman // Climatic Change. - 2010. - Vol. 98, no. 1-2. - P. 113-131.
- DOI: 10.1007/s10584-009-9622-2
- Deo, R.C. Application of the Artificial Neural Network model for prediction of monthly Standardized Precipitation and Evapotranspiration Index using hydrometeorological parameters and climate indices in eastern Australia / R.C. Deo, M. Şahin // Atmospheric Research. - 2015. - Vol. 161-162. - P. 65-81.
- DOI: 10.1016/j.atmosres.2015.03.018
- Alhumaima, A.S. Preliminary Assessment of Hydrothermal Risks in the Euphrates-Tigris Basin: Droughts in Iraq / A.S. Alhumaima, S.M. Abdullaev // Вестник ЮУрГУ. Серия «Вычислительная математика и информатика». - 2018. - Т. 7, № 4. - С. 41-58.
- DOI: 10.14529/cmse180403
- Stathakis, D. How many hidden layers and nodes? / D. Stathakis // J. of Remote Sensing. - 2009. - Vol. 30, no. 8. - P. 2133-2147.
- DOI: 10.1080/01431160802549278
- Sheela, K.G. Review on Methods to Fix Number of Hidden Neurons in Neural Networks / K.G. Sheela, S.N. Deepa // Mathematical Problems in Engineering. - 2013. Article ID 425740, 11 p.
- DOI: 10.1155/2013/425740