Leaf photochemical activity and antioxidant protection in selected hill rice genotypes of Koraput, India in relation to aluminum (Al3+) stress
Автор: Panda Debabrata, Sahoo Ritesh S., Behera Prafulla K., Barik Jijnasa, Nayak Jayanta K.
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 2 т.16, 2020 года.
Бесплатный доступ
Genetic variation for Aluminum (Al3+) tolerance is prerequisite for developing cultivars with improved tolerance to Al3+ stress. The present study aims to assess genotypic variability of growth, photosynthesis along with antioxidant defense in popular hill rice landraces of Koraput, India under different concentrations of Al3+ and compare the responses with modern rice varieties to identify Al3+ tolerant rice genotypes. After exposure to different level of Al3+, the growth parameters such as shoot length, root length, fresh and dry weight of rice seedlings were significantly (P3+. Higher concentration of Al3+ also alters the photo system (PS) II activity, as revealed in the reduction in the values of maximal fluorescence (Fm), maximum photochemical efficiency of PSII (Fv/Fm), yield of photochemical efficiency [Y(II)] and photosynthetic quenching (qP) with concomitant increase of minimal fluorescence (Fo) and non-photosynthetic quenching (NPQ)...
Antioxidant enzymes, al3+ tolerance, chlorophyll fluorescence, traditional rice
Короткий адрес: https://sciup.org/143171162
IDR: 143171162
Список литературы Leaf photochemical activity and antioxidant protection in selected hill rice genotypes of Koraput, India in relation to aluminum (Al3+) stress
- Aro E.M., Virgin I. and Anderson B. (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta, 1143, 113-134
- Baker N.R. and Rosenquist E. (2004) Applications of chlorophyll fluorescence can improve crop production strategies, an examination of future possibilities. J. Exp. Bot., 55, 1607- 1621
- Bhaduri A.M. and Fulekar M.H. (2012) Assessment of arbuscular mycorrhizal fungi on the phytoremediation potential of Ipomoea aquatica on cadmium uptake. 3 Biotech, 2, 193-198
- Cakmak I. and Marschner H. (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol., 98, 1222-1227
- Calatayud A. and Barreno E. (2001) Chlorophyll a fluorescence, antioxidant enzymes and lipid peroxidation in tomato in response to ozone and benomyl. Environ. Pollut., 115, 283-289
- Calatayud A., Roca D. and Martínez P.F. (2006) Spatial-temporal variations in rose leaves under water stress conditions studied by chlorophyll fluorescence imaging. Plant Physiol. Biochem., 44, 564-573
- Chowdhury S.R. and Choudhuri M.A. (1985) Hydrogen peroxide metabolism as an index of water stress tolerance in Jute. Physiol. Plant., 65, 503-507
- Foy C.D. (1988) Plant adaptation to acid, aluminum-toxic soils. Commun. Soil Sci. Plan., 19, 959- 987
- Giannopolitis C.N. and Ries S.K. (1977) Superoxide dismutases: I. occurrence in higher plants. Plant Physiol., 115, 159-169
- Guo T.R., Yao P.C., Zhang Z.D., Wang J.J. and Wang M. (2012) Involvement of antioxidative defence system in rice seedlings exposed to aluminum toxicity and phosphorus deficiency. Rice Sci., 19(3), 207-212
- Hoekenga O.A., Vision T.J., Shaff J.E., Monforte A.J., Lee G.P., Howell S.H. and Kochian L.V. (2003) Identification and characterization of aluminum tolerance loci in Arabidopsis (Landsberg erectax Columbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait. Plant Physiol., 132(2), 936-948
- Huang C.F., Yamaji N., Chen Z. and Ma J.F. (2012) A tonoplast-localized halfsize ABC transporter is required for internal detoxification of aluminum in rice. Plant J., 69, 857-867
- Kochian L.V. (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 46, 237-260
- Kochian L.V., Hoekenga O.A. and Piñeros M.A. (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu. Rev. Plant Biol., 55, 459-493
- Lowry O.H., Rosebrough N.J., Farr A.L. and Randall R.J. (1951) Protein measurement with the Folin Phenol reagent. J. Biol. Chem., 193, 265-275
- Ma J., Lv C., Xu M., Chen G., Lv C. and Gao Z. (2016) Photosynthesis performance, antioxidant enzymes, and ultrastructural analyses of rice seedlings under chromium stress. Environ. Sci. Pollut. Res., 23(2), 1768-1778
- Mathur S., Kalaji H.M. and Jajoo A. (2016) Investigation of deleterious effect of chromium phytotoxicity and photosynthesis in wheat plants. Photosynthetica, 54, 1-8
- Maxwell K. and Johnson G.N. (2000) Chlorophyll fluorescence-a practical guide. J. Exp. Bot., 51, 659-668
- Mishra S., Chaudhury S.S. and Nambi V.A. (2012) Strengthening of traditional seed selection practices with improved knowledge and skills of tribal farm families in Koraput District. Indian J. Tradit. Knowl., 11(3), 461-470
- Murchie E.H. and Lawson T. (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J. Exp. Bot., 64, 3983-3998
- Nakano Y. and Asada K. (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22, 867-880
- Nayek S., Choudhury I.H., Jaishee N. and Roy S. (2014) Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res. J. Chem. Sci., 4(9), 63-69
- Panda S.K. (2007) Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. J. Plant Physiol., 164(11), 1419-1428
- Panda S.K., Baluska F. and Matsumoto H. (2009) Aluminum stress signaling in plants. Plant Signal. Behav., 4(7), 592-597
- Panda S.K. and Choudhury S. (2005) Chromium stress in plants. Braz. J. Plant Physiol., 17, 131-136
- Panda S.K., Singha L.B. and Khan M.H. (2003) Does aluminum phytotoxicity induce oxidative stress in Greengram (Vigna radiata)? Bulg. J. Plant Physiol., 29(1-2), 77-86
- Pineros M.A. and Kochian L.V. (2001) A patch-clamp study on the physiology of aluminum toxicity and aluminum tolerance in maize. Identification and characterization of Al3+-induced anion channels. Plant Physiol., 125, 292-305
- Porra R.J. (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth. Res., 73(1-3), 149-156
- Prashanth S.R., Parani M., Mohanty B.P., Talame V., Tuberosa R. and Parida A. (2002) Genetic diversity in cultivars and landraces of Oryza sativasub sp. Indica has revealed by AFLP markers. Genome, 45(3), 451-459
- Rao M.V., Hale B.A. and Ormrod D.P. (1995) Amelioration of ozone-induced oxidative damage in wheat plantsgrown under high carbon dioxide: Role of antioxidant enzyme. Plant Physiol., 109, 421-432
- Shanker A.K., Cervantes C., Loza-Tavera H. and Avudainayagam S. (2005) Chromium toxicity in plants - A review. Environ. Int., 31, 739-753
- Simon L., Kieger M., Sung S.S. and Smalley T.J. (1994) Aluminum toxicity in tomato. Part 2. Leaf gas exchange, chlorophyll content, and invertase activity. J. Plant Nutr., 17, 307-317
- Singh S., Eapen S. and D'Souza S.F. (2006) Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant Bacopa monnieri L. Chemosphere, 62, 233-246
- Vikram P., Swamy B.P.M., Dixit S., Trinidad J., Sta Cruz M.T., Maturan P.C., Amante M. and Kumar A. (2016) Linkages and interactions analysis of major effect drought grain yield QTLs in rice. PLoS One, 11(3), e0151532
- Xu T., Shively C.A., Jin R., Eckwahi M.J., Dobry C.J., Song Q. and Kumar A. (2010) A profile of deferentially abundant proteins at the yeast cell periphery during pseudohyphal growth. J. Biol. Chem., 285(20), 15476-15488
- Yang J.L., Li Y.Y., Zhang Y.J., Zhang S.S., Wu Y.R., Wu P. and Zheng S.J. (2008) Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiol., 146, 602-611
- Zhang A., Zhang J., Ye N., Cao J., Tan M. and Jiang M. (2010) ZmMPK5 is required for the NADPH oxidase mediated self-propagation of apoplastic H2O2 in brassinosteroid-induced antioxidant defence in leaves of maize. J. Exp. Bot., 61, 4399-4411