Легочный фиброз как последствие пандемии COVID-19
Автор: Айтбаев Кубаныч Авенович, Муркамилов Илхом Торобекович, Фомин Виктор Викторович, Кудайбергенова Индира Орозобаевна, Муркамилова Жамила Абдилалимовна, Юсупов Фуркат Абдулахатович
Журнал: Бюллетень науки и практики @bulletennauki
Рубрика: Медицинские науки
Статья в выпуске: 5 т.7, 2021 года.
Бесплатный доступ
Минувший кризисный 2020 год принес огромное число человеческих жертв от пандемии COVID-19, которая унесла на сегодня уже более 2 миллионов жизней. Высокая летальность при COVID-19 связана с развитием острого респираторного дистресс-синдрома (ОРДС), который приводит к госпитализации пациентов в отделения интенсивной терапии. В борьбе с этим смертельным заболеванием, параллельно с усилиями по эпидемическому контролю и лечению заразившихся больных, а также изучению патофизиологии этой новой коронавирусной инфекции, необходимо проводить исследования и клинические наблюдения для оценки долгосрочных последствий ОРДС COVID-19. Следует также проводить исследования по поиску надежных клинических и лабораторных биомаркеров, чтобы на их основе можно было предсказать подгруппу пациентов, у которых может развиться или прогрессировать фиброз легких.
Интерстициальная легочная болезнь, фиброз легких
Короткий адрес: https://sciup.org/14120966
IDR: 14120966 | DOI: 10.33619/2414-2948/66/18
Список литературы Легочный фиброз как последствие пандемии COVID-19
- (WHO) WHO, Coronavirus disease 2019 (COVID-19) situation report-98 27 April 2020, WHO Bull, 2020.
- Guan W. J., Ni Z. Y., Hu Y., Liang W. H., Ou C. Q., He J. X., Zhong N. S. China medical treatment expert group for Covid-19 //Clinical characteristics of coronavirus disease. 2019. P. 17081720. https://doi.org/10.1056/NEJMoa2002032
- Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Peng Z.Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China // Jama. 2020. V. 323. №11. P. 1061-1069. https://doi.org/10.1001/jama.2020.1585
- Burnham E. L., Janssen W. J., Riches D. W., Moss M., Downey G. P. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significance // European respiratory journal. 2014. V. 43. №1. P. 276-285. https://doi.org/10.1183/09031936.00196412
- Cardinal-Fernández P., Lorente J. A., Ballén-Barragán A., Matute-Bello G. Acute respiratory distress syndrome and diffuse alveolar damage. New insights on a complex relationship // Annals of the American Thoracic Society. 2017. V. 14. №6. P. 844-850. https://doi.org/10.1513/AnnalsATS.201609-728PS
- Thille A. W., Esteban A., Fernández-Segoviano P., Rodriguez J. M., Aramburu J. A., Vargas-Errázuriz P., Frutos-Vivar F. Chronology of histological lesions in acute respiratory distress syndrome with diffuse alveolar damage: a prospective cohort study of clinical autopsies // The lancet Respiratory medicine. 2013. V. 1. №5. P. 395-401. https://doi.org/10.1016/S2213-2600(13)70053-5
- George P. M., Wells A. U., Jenkins R. G. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy // The Lancet Respiratory Medicine. 2020. https://doi .org/10.1016/S2213 -2600(20)30225-3
- Huang X., Xiu H., Zhang S., Zhang G. The role of macrophages in the pathogenesis of ALI/ARDS // Mediators of inflammation. 2018. V. 2018. https://doi.org/10.1155/2018/1264913
- Wu C., Chen X., Cai Y., Zhou X., Xu S., Huang H., Song Y. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China // JAMA internal medicine. 2020. V. 180. №7. P. 934-943. https://doi.org/10.1001/jamainternmed.2020.0994
- Mo X., Jian W., Su Z., Chen M., Peng H., Peng P., Li S. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge // European Respiratory Journal. 2020. V. 55. №6. https://doi.org/10.1183/13993003.01217-2020
- Hu Q., Guan H., Sun Z., Huang L., Chen C., Ai T., Xia L. Early CT features and temporal lung changes in COVID-19 pneumonia in Wuhan, China // European journal of radiology. 2020. V. 128. P. 109017. https://doi.org/10.1016Zj.ejrad.2020.109017
- Wei J., Lei P., Yang H., Fan B., Qiu Y., Zeng B., Wan C. Analysis of thin-section CT in patients with coronavirus disease (COVID-19) after hospital discharge // Journal of X-ray Science and Technology. 2020. №Preprint. P. 1-7. https://doi.org/10.1016/j.clinimag.2020.05.001
- Ooi G. C., Khong P. L., Müller N. L., Yiu W. C., Zhou L. J., Ho J. C., Tsang K. W. Severe acute respiratory syndrome: temporal lung changes at thin-section CT in 30 patients // Radiology. 2004. V. 230. №3. P. 836-844. https://doi.org/10.1148/radiol.2303030853
- Zhang P., Li J., Liu H., Han N., Ju J., Kou Y., Jiang B. Long-term bone and lung consequences associated with hospital-acquired severe acute respiratory syndrome: a 15-year follow-up from a prospective cohort study // Bone research. 2020. V. 8. №1. P. 1-8. https://doi.org/10.1038/s41413-020-0084-5
- Das K. M., Lee E. Y., Singh R., Enani M. A., Al Dossari K., Van Gorkom K., Langer R. D. Follow-up chest radiographic findings in patients with MERS-CoV after recovery // The Indian journal of radiology & imaging. 2017. V. 27. №3. P. 342. https://doi.org/10.4103/ijri.IJRI_469_16
- Meduri G. U., Headley S., Kohler G., Stentz F., Tolley E., Umberger R., Leeper K. Persistent elevation of inflammatory cytokines predicts a poor outcome in ARDS: plasma IL-1ß and IL-6 levels are consistent and efficient predictors of outcome over time // Chest. 1995. V. 107. №4. P. 1062-1073. https://doi.org/10.1378/chest.107A1062
- Masclans J. R., Roca O., Muñoz X., Pallisa E., Torres F., Rello J., Morell F. Quality of life, pulmonary function, and tomographic scan abnormalities after ARDS // Chest. 2011. V. 139. №6. P. 1340-1346. https://doi.org/10.1378/chest.10-2438
- Desai S. R., Wells A. U., Rubens M. B., Evans T. W., Hansell D. M. Acute respiratory distress syndrome: CT abnormalities at long-term follow-up // Radiology. 1999. V. 210. №1. P. 2935. https://doi .org/10.1148/radiology.210.1.r99ja2629
- Burnham E. L., Hyzy R. C., Paine III R., Coley C. Chest computed tomography features are associated with poorer quality of life in acute lung injury survivors // Critical care medicine. 2013. V. 41. №2. P. 445. https://doi.org/10.1097/CCM.0b013e31826a5062
- Spagnolo P., Balestro E., Aliberti S., Cocconcelli E., Biondini D., Delia Casa G., Maher T. M. Pulmonary fibrosis secondary to COVID-19: a call to arms? // The Lancet Respiratory Medicine. 2020. V. 8. №8. P. 750-752. https://doi.org/10.1016/S2213-2600(20)30222-8
- Risitano A. M., Mastellos D. C., Huber-Lang M., Yancopoulou D., Garlanda C., Ciceri F., Lambris J. D. Author Correction: Complement as a target in COVID-19? // Nature reviews. Immunology. 2020. P. 1. https://dx.doi.org/10.1038%2Fs41577-020-0366-6
- Giamarellos-Bourboulis E. J., Netea M. G., Rovina N., Akinosoglou K., Antoniadou A., Antonakos N., Koutsoukou A. Complex immune dysregulation in COVID-19 patients with severe respiratory failure // Cell host & microbe. 2020. V. 27. №6. P. 992-1000. e3. https://doi.org/10.10167j.chom.2020.04.009
- Yan L., Zhang H. T., Goncalves J., Xiao Y., Wang M., Guo Y., Yuan Y. An interpretable mortality prediction model for COVID-19 patients // Nature machine intelligence. 2020. V. 2. №5. P. 283-288. https://doi.org/10.1038/s42256-020-0180-7
- Kishaba T., Tamaki H., Shimaoka Y., Fukuyama H., Yamashiro S. Staging of acute exacerbation in patients with idiopathic pulmonary fibrosis // Lung. 2014. V. 192. №1. P. 141-149. https://doi.org/10.1007/s00408-013-9530-0
- Wang Y., Wang H., Zhang C., Zhang C., Yang H., Gao R., Tong Z. Lung fluid biomarkers for acute respiratory distress syndrome: a systematic review and meta-analysis // Critical Care. 2019. V. 23. №1. P. 1-15. https://doi.org/10.1186/s13054-019-2336-6
- Capelozzi V. L., Allen T. C., Beasley M. B., Cagle P. T., Guinee D., Hariri L. P., Smith M. L. Molecular and immune biomarkers in acute respiratory distress syndrome: a perspective from members of the pulmonary pathology society // Archives of pathology & laboratory medicine. 2017. V. 141. №12. P. 1719-1727. https://doi.org/10.5858/arpa.2017-0115-SA
- Madtes D. K., Rubenfeld G., Klima L. D., Milberg J. A., Steinberg K. P., Martin T. R., Clark J. G. Elevated transforming growth factor-a levels in bronchoalveolar lavage fluid of patients with acute respiratory distress syndrome // American journal of respiratory and critical care medicine. 1998. V. 158. №2. P. 424-430. https://doi.org/10.1164/ajrccm.158.2.9711112
- Forel J. M., Guervilly C., Hraiech S., Voillet F., Thomas G., Somma C., Papazian L. Type III procollagen is a reliable marker of ARDS-associated lung fibroproliferation // Intensive care medicine. 2015. V. 41. №1. P. 1-11. https://doi.org/10.1007/s00134-014-3524-0
- Quesnel C., Piednoir P., Gelly J., Nardelli L., Garnier M., Lecon V., Dehoux M. Alveolar fibrocyte percentage is an independent predictor of poor outcome in patients with acute lung injury // Critical care medicine. 2012. V. 40. №1. P. 21-28. https://doi .org/ 10.1097/CCM.0b013e31822d718b
- Lin C. M., Alrbiaan A., Odackal J., Zhang Z., Scindia Y., Sung S. S. J., Mehrad B. Circulating fibrocytes traffic to the lung in murine acute lung injury and predict outcomes in human acute respiratory distress syndrome: a pilot study // Molecular Medicine. 2020. V. 26. P. 1-11. https://doi .org/10.1186/s10020-020-00176-0
- Tsitoura E., Bibaki E., Bolaki M., Vasarmidi E., Trachalaki A., Symvoulakis E. K., Antoniou K. M. [Comment] Treatment strategies to fight the new coronavirus SARS-CoV-2: A challenge for a Rubik's Cube solver // Experimental and Therapeutic Medicine. 2020. V. 20. №1. P. 147-150. https://doi.org/10.3892/etm.2020.8692
- Shi H., Han X., Jiang N., Cao Y., Alwalid O., Gu J., Zheng C. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study // The Lancet infectious diseases. 2020. V. 20. №4. P. 425-434. https://doi.org/10.1016/S1473-3099(20)30086-4
- Margaritopoulos G. A., Trachalaki A., Wells A. U., Vasarmidi E., Bibaki E., Papastratigakis G., Antoniou K. M. Pirfenidone improves survival in IPF: results from a real-life study // BMC pulmonary medicine. 2018. V. 18. №1. P. 1-7. https://doi.org/10.1186/s12890-018-0736-z
- Antoniou K., Markopoulou K., Tzouvelekis A., Trachalaki A., Vasarmidi E., Organtzis J., Bouros D. Efficacy and safety of nintedanib in a Greek multicentre idiopathic pulmonary fibrosis registry: A retrospective, observational, cohort study // ERJ open research. 2020. V. 6. №1. https://doi.org/10.1183/23120541.00172-2019
- Li Y., Li H., Liu S., Pan P., Su X., Tan H., Hu C. Pirfenidone ameliorates lipopolysaccharide-induced pulmonary inflammation and fibrosis by blocking NLRP3 inflammasome activation // Molecular immunology. 2018. V. 99. P. 134-144. https://doi.org/10.1016/j.molimm.2018.05.003
- Saha A., Vaidya P. J., Chavhan V. B., Achlerkar A., Leuppi J. D., Chhajed P. N. Combined pirfenidone, azithromycin and prednisolone in post-H1N1 ARDS pulmonary fibrosis // Sarcoidosis, Vasculitis, and Diffuse Lung Diseases. 2018. V. 35. №1. P. 85. https://doi.org/10.36141/svdld.v35i1.6393