Local search in bilinear two-person game
Автор: Khamisov O.V., Minarchenko I.M.
Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau
Рубрика: Математика, механика, информатика
Статья в выпуске: 1 т.17, 2016 года.
Бесплатный доступ
We consider an approach that allows reducing Nash equilibrium problem to a minimax problem for rather wide class of games using the so-called Nikaido-Isoda function. One can reformulate minimax problem as an optimization problem with nonconvex and implicitly defined objective function in general case. In other words, the set of Nash equilibria of the game is coincide with the set of global solutions of derived optimization problem. In present paper we investigate such an approach as applied to bilinear two-person game with quadratic loss functions and independent strategy spaces in view of an assumption that loss functions are strictly convex with respect to own players’ variables. In this case we suggest to replace “inner” optimization problem in minimax problem by Lagrange dual one. Such a way leads to presentation of the objective function as a difference of two convex functions (d.c-decomposition of the objective function). The very function in d.c-decomposition, that forms concave part, is defined implicitly as well as the objective function. We propose a method for linearization of concave term. That allows using the well-known local search method for d.c-functions, where the next iteration point is a solution of convex optimization problem with the objective function, which gained from initial objective by linearization of concave term in d.c-decomposition. Since the concerned problem is nonconvex, we offer to use local search in combination with multistart. The results of computational experiment are provided in the paper.
Nash equilibrium, nikaido-isoda function, d.c-decomposition, d.c-разложение
Короткий адрес: https://sciup.org/148177556
IDR: 148177556
Список литературы Local search in bilinear two-person game
- Antipin A. S. Gradientnyy i ekstragradientnyy podkhody v bilineynom ravnovesnom programmirovanii . Moscow, VTs im. A. A. Dorodnitsyna RAN Publ., 2002, 130 p.
- Garg J., Jiang A. X., Mehta R. Bilinear Games: Polynomial Time Algorithms for Rank Based Subclasses. Lecture Notes in Computer Science. Internet and Network Economics, 2011, Vol. 7090, P. 399-407. DOI: 10.1007/978-3-642-25510-6_35.
- Strekalovskiy A. S., Orlov A. V. Bimatrichnye igry i bilineynoe programmirovanie . Moscow, Fizmatlit Publ., 2007, 224 p.
- Gol’shteyn E. G., Malkov U. Kh., Sokolov N. A. . Ekonomika i matematicheskie metody, 2013, Vol. 49, No. 4, P. 94-104 (In Russ.).
- Gol’shteyn E. G. . Ekonomika i matematicheskie metody, 2014, Vol. 50, No. 1, P. 110-116 (In Russ.).
- Quint T., Shubik M. A Theorem on the Number of Nash Equilibriua in a Bimatrix Game. International Journal of Game Theory, 1997, Vol. 26, P. 353-359. DOI: DOI: 10.1007/BF01263276
- Nikaidô H., Isoda K. Note on Noncooperative Convex Games. Pacific Journal of Mathematics, 1955, Vol. 5, No. 5, P. 807-815. DOI: DOI: 10.2140/pjm.1955.5.807
- Flåm S. D., Ruszczyński A. Finding Normalized Equilibrium in Convex-Concave Games. International Game Theory Review, 2008, Vol. 10, No. 1, P. 37-51. DOI: DOI: 10.1142/S0219198908001765
- Mills H. Equilibrium Points in Finite Games. Journal of the Society for Industrial and Applied Mathematics, 1960, Vol. 8, No. 2, P. 397-402. DOI: DOI: 10.1137/0108026
- Mangasarian O. L. Equilibrium points of bimatrix games. Journal of the Society for Industrial and Applied Mathematics, 1964, Vol. 12, P. 778-780. DOI: DOI: 10.1137/0112064
- Strekalovskii A. S., Enkhbat R. Polymatrix Games and Optimization Problems. Automation and Remote Control, 2014, Vol. 75, No. 4, P. 632-645. DOI: DOI: 10.1134/S0005117914040043
- Monderer D., Shapley L. S. Potential Games. Games and Economic Behavior, 1996, Vol. 14, No. 1, P. 124-143. DOI: DOI: 10.1006/game.1996.0044
- Minarchenko I. M. . Diskretnyy analiz i issledovanie operatsiy, 2014, Vol. 21, No. 5, P. 40-53 (In Russ.).
- Minarchenko I. M. . Izvestiya IGU Seriya matematika, 2014, Vol. 10, P. 62-75 (In Russ.).
- Khamisov O. V. A global optimization approach to solving equilibrium programming problems. Series on Computers and Operations Research, 2003, Vol. 1. Optimization and Optimal Control, P. 155-164.
- Khamisov O. V. . Trudy IMM UrO RAN, 2013, Vol. 19, No. 2, P. 295-306 (In Russ.).
- Pham D. T., Le T. H. A. Convex Analysis Approach to D.C. Programming: Theory, Algorithms and Applications. Acta Mathematica Vietnamica, 1997, Vol. 22, No. 1, P. 289-355.
- Rosenthal R. E. GAMS -A user’s guide. Available at: http://www.gams.com/help/topic/gams.doc/userguides/GAMSUsersGuide.pdf (accessed 16.02.2016).
- Антипин А. С. Градиентный и экстраградиентный подходы в билинейном равновесном программировании. М.: ВЦ им. А. А. Дородницына РАН, 2002. 130 с.
- Garg J., Jiang A. X., Mehta R. Bilinear games: Polynomial time algorithms for rank based subclasses//Lecture Notes in Computer Science. Internet and Network Economics. 2011. Vol. 7090. P. 399-407.
- Стрекаловский А. С., Орлов А. В. Биматричные игры и билинейное программирование. М.: ФИЗМАТ-ЛИТ, 2007. 224 с.
- Гольштейн Е. Г., Малков У. Х., Соколов Н. А. Об одном численном методе решения биматричных игр//Экономика и математические методы. 2013. T. 49, № 4. C. 94-104.
- Гольштейн Е. Г. Приближённый метод решения конечной игры трёх лиц//Экономика и математические методы, 2014. Т. 50, № 1. С. 110-116.
- Quint T., Shubik M. A Theorem on the number of Nash equilibriua in a bimatrix game//International Journal of Game Theory. 1997. Vol. 26. P. 353-359.
- Nikaidô H., Isoda K. Note on noncooperative convex games//Pacific Journal of Mathematics. 1955. Vol. 5, № 5. P. 807-815.
- Flåm S. D., Ruszczyński A. Finding normalized equilibrium in convex-concave games//International Game Theory Review. 2008. Vol. 10, № 1. P. 37-51.
- Mills H. Equilibrium points in finite games//Journal of the Society for Industrial and Applied Mathematics. 1960. Vol. 8, № 2. P. 397-402.
- Mangasarian O. L. Equilibrium points of bimatrix games//Journal of the Society for Industrial and Applied Mathematics. 1964. Vol. 12. P. 778-780.
- Strekalovskii A. S., Enkhbat R. Polymatrix games and optimization problems//Automation and Remote Control. 2014. Vol. 75, № 4. P. 632-645.
- Monderer D., Shapley L. S. Potential games//Games and Economic Behavior. 1996. № 14. P. 124-143.
- Минарченко И. М. Численный поиск равновесия в модели Курно с S-образными функциями издержек//Дискретный анализ и исследование операций. 2014. T. 21, № 5. C. 40-53.
- Минарченко И. М. Применение метода ветвей и границ для поиска равновесия в потенциальной модели Курно//Известия Иркутского государственного университета. Сер. «Математика». 2014. Т. 10. С. 62-75.
- Khamisov O. V. A global optimization approach to solving equilibrium programming problems//Series on Computers and Operations Research. Vol. 1. Optimization and Optimal Control. 2003. P. 155-164.
- Хамисов О. В. Невыпуклая оптимизация с нелинейными опорными функциями//Труды ИММ УрО РАН. 2013. Т. 19, № 2. С. 295-306.
- Pham D. T., Le T. H. A. Convex analysis approach to d.c-programming: Theory, algorithms and applications//Acta Mathematica Vietnamica. 1997. Vol. 22, № 1. P. 289-355.
- Rosenthal R. E. GAMS -A user’s guide . URL: http://www.gams.com/help/topic/gams.doc/userguides/GAMSUsersGuide.pdf (дата обращения: 16.02.2016).