Magnetic impedance in nonstichiometric manganese sulfide
Автор: Kharkov A.M., Sitnikov M.N., Aplesnin S.S.
Журнал: Siberian Aerospace Journal @vestnik-sibsau-en
Рубрика: Technological processes and material science
Статья в выпуске: 3 vol.24, 2023 года.
Бесплатный доступ
The role of defects on the dynamic characteristics of manganese sulfide is studied by impedance spectroscopy in the frequency range 102–106 Hz and temperatures 80–500 K. Nonstoichiometry plays an important role in the formation of new transport and magnetic properties, as it leads to electrically inhomogeneous states. The phase composition and crystal structure of nonstoichiometric manganese sulfide were studied on a DRON-3 X-ray unit using CuKα – radiation at room temperature. According to X-ray diffraction analysis, the synthesized compound is single-phase and has a NaCl-type cubic lattice. From the frequency dependences of the impedance components measured in the absence of a field and in a magnetic field, the relaxation time of the current carriers in the Debye model is found. A sharp decrease in the relaxation time and its correlation with conductivity were found. The contribution to the impedance of the active and reactive parts of the impedance at frequencies below and above the relaxation time is established. The capacitance from the impedance hodograph in the equivalent circuit model is determined. In defective manganese sulfide, the temperature-dependent impedance has an activation character. The activation energy is determined in the range 250–500 K, which is attributed to the excitation energy of lattice polarons. The effect of a magnetic field on the dynamic characteristics of current carriers was studied as a result of a change in the impedance components in a magnetic field at fixed temperatures. The impedance increases in a magnetic field and reaches a maximum in the temperature range of charge ordering of vacancies. An increase in the impedance in a magnetic field is explained by a decrease in the diagonal component of the permittivity in a magnetic field in an electrically inhomogeneous medium. The experimental data are explained in the Debye model.
Semiconductors, impedance, magnetoimpedance, Debye model
Короткий адрес: https://sciup.org/148329704
IDR: 148329704 | DOI: 10.31772/2712-8970-2023-24-3-613-620
Список литературы Magnetic impedance in nonstichiometric manganese sulfide
- Wang J., Neaton J.B., Zheng H. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science. 2003, Vol. 299, P. 1719.
- Zvezdin A. K., Pyatakov A. P. Phase transitions and the giant magnetoelectric effect in multiferroics. Usp. Fiz. Nauk. 2004, Vol. 174, Is. 4, P. 465.
- Zvezdin A. K., Logginov A. S., Meshkov G. A. et al. Multiferroics: Promising materials for microelectronics, spintronics, and sensor technique. Bull. Russ. Acad. Sci. Phys. 2007, Vol. 71, P. 1561.
- Aplesnin S. S. Osnovi spintroniki [Fundamentals of spintronics]. St. Petersburg, Lan Publ., 2022, 288 p.
- Ennen I., Kappe D., Rempel T. et al. Giant Magnetoresistance: Basic Concepts, Microstructure, Magnetic Interactions and Applications. Sensors. 2016, Vol. 16, Is. 6, P. 904.
- Binasch G., Grunberg P., Saurenbach F., Zinn W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B. 1989, Vol. 39, P. 4828.
- Aplesnin S. S., Romanova O. B., Yanushkevich K. I. Magnetoresistance effect in anionsubstituted manganese chalcogenides. Phys. Stat. Sol. B Basic Research. 2015, Vol. 252, Is. 8, P. 1792.
- Aplesnin S. S., Sitnikov M. N., Romanova O. B. et al. Magnetoelectric and magnetoresistive properties of the СexMn1–xS semiconductors. Phys. Stat. Sol. B Basic Research. 2016, Vol. 253, Is. 9, P. 1771.
- Romanova O. B., Aplesnin S. S., Sitnikov M. N. et al. Magnetoresistance and magnetoimpedance in holmium manganese sulfides. Appl. Phys. A. 2022, Vol. 128, P. 124.
- Zhang J. H., Zheng S. H., Tang Y. S. et al. Structural, magnetic, and dielectric properties of charge-order phases in manganite La(Ca0.8Sr0.2)2Mn2O7. J. Appl. Phys. 2020, Vol. 127, P. 104301.
- Papavassiliou J. The Pinch Technique at Two Loops. Phys. Rev. Lett. 2000, Vol. 84, P. 2782.
- Allodi G., De Renzi R., Guidi G. et al. Electronic phase separation in lanthanum manganites: Evidence from 55Mn NMR. Phys. Rev. B. 1997, Vol. 56, P. 6036.
- Hennion M., Moussa F., Biotteau G. et al. Liquidlike Spatial Distribution of Magnetic Droplets Revealed by Neutron Scattering in La1−xCaxMnO3. Phys. Rev. Lett. 1998, Vol. 81, P. 1957.
- Wang W., Li J., Liang Z. et al. Verwey transition as evolution from electronic nematicity to trimerons via electron-phonon coupling. Sci. Adv. 2023, Vol. 9, P. 8220.
- Aplesnin S. S., Ryabinkina L. I., Abramova G. M. et al. Spin-dependent transport in α-MnS single crystals. Phys. Sol. St. 2004, Vol. 46, Is. 11, P. 2067.
- Aplesnin S. S., Ryabinkina L. I., Abramova G. M. et al. Conductivity, weak ferromagnetism, and charge instability in an α-MnS single crystal. Phys. Rev. B. 2005. Vol. 71. Is. 12. P. 125204.
- Wang S., Zhang J., Gharbi O. et al. Electrochemical impedance spectroscopy. Nat. Rev. Meth. Prim. 2021, Vol. 1, P. 41.
- Holm S. Time domain characterization of the Cole-Cole dielectric model. J. Electr. Bioimpedance. 2020, Vol. 11, Is. 1, P. 101.
- Parish M. M., Littlewood P. B. Magnetocapacitance in Nonmagnetic Composite Media. Phys. Rev. Lett. 2008, Vol. 101, P. 166602.
- Yang Y.-F., Held K. Localization of strongly correlated electrons as Jahn-Teller polarons in manganites. Phys. Rev. B. 2007, Vol. 76, P. 212401.
- Merten S., Shapoval O., Damaschke B. et al. Magnetic-field-induced suppression of Jahn-Teller phonon bands in (La0.6Pr0.4)0.7Ca0.3MnO3: the mechanism of colossal magnetoresistance shown by Raman spectroscopy. Sci. Rep. 2019, Vol. 9, P. 2387.