Magnetoimpedance in thulium manganese chalcogenide

Автор: Kharkov A.M., Sitnikov M.N., Aplesnin S.S.

Журнал: Siberian Aerospace Journal @vestnik-sibsau-en

Рубрика: Technological processes and material science

Статья в выпуске: 4 vol.25, 2024 года.

Бесплатный доступ

Control of transport characteristics under the influence of a magnetic field is promising from the point of view of creating magnetic field sensors resistant to radiation. The impedance and its components in thulium manganese chalcogenide in the frequency range of 102–106 Hz are studied. The temperature range with a prevailing contribution of the reactive and active parts of the impedance is found. The impedance components are described in the Debye model. When manganese is replaced by thulium ions, the frequencies of the maxima of the imaginary component of the impedance shift toward high frequencies in manganese selenide by two orders of magnitude. With an increase in the concentration of substitution by thulium ions in selenides, two relaxation times are found, compared with sulfides. The activation nature of the relaxation time, the activation energy from the concentration of thulium ions are found. An increase in impedance in a magnetic field in the region of low concentrations and a change in the sign of the impedance with temperature for high concentrations are established. Magnetoimpedance in chalcogenides passes through a maximum when heating the samples. The increase in impedance in a magnetic field is due to a change in the diagonal component of the permittivity in a magnetic field, which is proportional to the conductivity. A positive value of magnetoimpedance is described in the model of an electrically inhomogeneous medium. From the impedance, information can be obtained about the electrical inhomogeneity of the material.

Еще

Semiconductors, magnetoimpedance, Debye model

Короткий адрес: https://sciup.org/148329764

IDR: 148329764   |   DOI: 10.31772/2712-8970-2024-25-4-531-538

Список литературы Magnetoimpedance in thulium manganese chalcogenide

  • Fowler D., Hardwick D. P. A., Patanè A. et al. Magnetic-field-induced miniband conduction in semiconductor superlattices. Phys. Rev. B 2007, Vol. 76. P, 245303.
  • Hod O., Baer R., Rabani E. Magnetoresistance of nanoscale molecular devices based on Aharonov– Bohm interferometry. J. Phys.: Cond. Matt. 2008, Vol. 20, P. 383201.
  • Musiienko A., Yang F., Gries T. W. et al. Resolving electron and hole transport properties in semiconductor materials by constant light-induced magneto transport. Nat. Comm. 2024, Vol. 15, P. 316.
  • Senanayak S. P., Dey K., Shivanna R. et al. Charge transport in mixed metal halide perovskite semiconductors. Nat. Mater. 2023, Vol. 22, P. 216–224.
  • Hu J., Rosenbaum T. F., Betts J. B. Current Jets, Disorder, and Linear Magnetoresistance in the Silver Chalcogenides. Phys. Rev. Lett. 2005, Vol. 95, P. 186603.
  • Aplesnin S. S., Kharkov A. M., Sitnikov M. N. Regulation of the thermopower and ultrasound by magnetic field in manganese sulfide doped with variable-valence ions. Eur. Phys. J. Plus 2024, Vol. 139, P. 247.
  • Aplesnin S. S., Sitnikov M. N., Romanova O. B. et al. Electrosound and asymmetry of the I‒V characteristic induced by ultrasound in the ReхMn1‒хS (Re = Tm, Yb). Eur. Phys. J. Plus. 2022, Vol. 137, P. 226.
  • Aplesnin S. S., Sitnikov M. N. [Magnetotransport effects in the paramagnetic state in GdxMn1−xS]. Letters to JETP. 2014, Vol. 100, Is. 2, P. 104–110 (In Russ.).
  • Evers F., Mirlin A. D. Anderson transitions. Rev. Mod. Phys. 2008, Vol. 80, P. 1355.
  • Nakayama T., Yakubo K. Anderson Transition. Fract. Conc. Cond. Matt. Phys. 2003, Vol. 140, P. 115–147.
  • Reim W., Wachter P. First Observation of a Magnetic-Exchange–Induced Valence Transition. Phys. Rev. Lett. 1985, Vol. 55, P. 871.
  • Kaldis E., Fritzler B. Valence and phase instabilities in TmSe crystals. Prog. Sol. St. Chem. 1982, Vol. 14, P. 95–139.
  • Strange P., Svane A., Temmerman W. M., et al. Understanding the valency of rare earths from first-principles theory. Nature 1999, Vol. 399, P. 756.
  • Wachter P. Handbook on the Physics and Chemistry of Rare Earths. Phys. Rev. B 1989, P. 132.
  • Reim W., Wachter P. First Observation of a Magnetic-Exchange–Induced Valence Transition. Phys. Rev. Lett. 1985, Vol. 55, P. 871.
  • Derr J., Knebel G., Lapertot G. et al. Valence and magnetic ordering in intermediate valence compounds: TmSe versus SmB6. J. Phys.: Cond. Matt. 2006, Vol. 18, P. 2089.
  • Udod L. V., Aplesnin S. S., Sitnikov M. N. et al. Magnetodielectric effect and spin state of iron ions in iron-substituted bismuth pyrostannate. Eur. Phys. J. Plus 2020, Vol. 135, P. 776.
  • Romanova O. B., Ryabinkina L. I., Sokolov V. V. et al. Magnetic properties and the metalinsulator transition in GdxMn1-xS solid solutions. Sol. St. Comm. 2010, Vol. 150, P. 602–604.
  • Romanova O. B., Aplesnin S. S., Sitnikov M. N. et al. Structural and electronic transitions in thulium-substituted manganese selenide. Ceram. Int. 2022, Vol. 48, Is. 20, P. 29822–29828.
  • Romanova O. B., Aplesnin S. S., Sitnikov M. N., et al. Magnetoresistance and magnetoimpedance in holmium manganese sulfides. Appl. Phys. A. 2022, Vol. 128, P. 124.
  • Parish M. M., Littlewood P. B. Magnetocapacitance in Nonmagnetic Composite Media. Phys. Rev. Lett. 2008, Vol. 101, P. 166602.
  • Aplesnin S. S., Sitnikov M. N., Kharkov A. M., Abdelbaki H. Effect of the Electrical Inhomogeneity on the Magnetocapacitance Sign Change in the HoxMn1‒xS Semiconductors upon Temperature and Frequency Variation. J. Mater. Sci.: Mater. Electron. 2023, Vol. 34, P. 284.
  • Aplesnin S. S., Kharkov A. M., Sitnikov M. N. [Turning of activation energy and magnetoimpedance by alternating current frequency in manganese sulfide with partial substitution by samarium ions]. FTT. 2023, Vol. 65, Is. 11, P. 1882–1888 (In Russ.).
  • Aplesnin S. S., Sitnikov M. N., Kharkov A. M. et al. Influence of induced electrical polarization on the magnetoresistance and magnetoimpedance in the spin-disordered TmxMn1–xS solid solution. Phys. Stat. Sol. B 2019, Vol. 256, P. 1900043.
  • Petrovsky V., Manohar A., Dogan F. Dielectric constant of particles determined by impedance spectroscopy. J. Appl. Phys. 2006, Vol. 100, P. 014102.
  • Gonzalez J. R., Sinclair D. C., West A. R. Impedance and Dielectric Spectroscopy of Functional Materials: A Critical Evaluation of the Two Techniques. J. Electrochem. Soc. 2023, Vol. 170, No. 11, P. 6504.
Еще
Статья научная