Many-parameter m-complementary Golay sequences and transforms
Автор: Labunets Valeri Grigorievich, Chasovskih Victor Petrovich, Smetanin Yuri Gennadievich, Ostheimer Rundblad Ekaterina
Журнал: Компьютерная оптика @computer-optics
Рубрика: Численные методы и анализ данных
Статья в выпуске: 6 т.42, 2018 года.
Бесплатный доступ
In this paper, we develop the family of Golay–Rudin–Shapiro (GRS) m-complementary many-parameter sequences and many-parameter Golay transforms. The approach is based on a new gen-eralized iteration generating construction, associated with n unitary many-parameter transforms and n arbitrary groups of given fixed order. We are going to use multi-parameter Golay transform in Intelligent-OFDM-TCS instead of discrete Fourier transform in order to find out optimal values of parameters optimized PARP, BER, SER, anti-eavesdropping and anti-jamming effects.
Complementary sequences, many-parameter orthogonal transforms, fast algorithms, ofdm systems
Короткий адрес: https://sciup.org/140238482
IDR: 140238482 | DOI: 10.18287/2412-6179-2018-42-6-1074-1082
Текст научной статьи Many-parameter m-complementary Golay sequences and transforms
Binary ± 1-valued Golay – Rudin – Shapiro sequences (2-GRSS) associated with the cyclic group Z2n were introduced independently by Golay [1, 2, 3] in 1949-1951, Shapiro [4, 5] and Rudin [6] in 1951.M.J.E.Golay [2] introduced the general concept of “complementary pairs" of finite sequences all of whose entries are ± 1. For building the classical FGRST in bases of classical 2-GRSS the following actors are used: 1) Abelian group Z2, 2) 2-point Fourier transform ^2, and 3) complex field С, i.e., these where {Grm,Gr2,...,Grm} is a set of arbitrary finite groups of given order m Here {Um, Um,..., U m} is a set of arbitrary unitary (m×m) – transforms represented in the many-parameter Jacobi-Euler form [9– 10]:
m — 1 m
um = um (фо, ф1,..., ф^ )=um (ф^ )=п П J (ф’г , s), r=1 s=r+1
m—1 m um = u m(фo2, ф?,..., ф2 )=um (фq)=пп J(ф 2, s), r=1 s=r+1
transforms are associated with the triple ( Z 2 , ^ 2 , C ).
In previous papers [7, 8], we have shown a new unified approach to the GF ( p ) -, or Clifford-valued complementary sequences and Golay transforms. It was associated not with the triple ( Z 2 , ^ 2 , C ), but with triples
( Z 2 , { CS 2 ( ф 1 ,ab Y i ), CS2 2 ( ф 2, « 2 , у 2 ),...,
CS П ( ф „ , a „ , у n ) } , A lg )
and ( Z 2 ,CS2( ф , a , y ), Alg ) , where { CS 2 ( ф 1 ,ab Y i ),
CS2 2 ( ф 2, a 2, Y 2 ),..., CS П ( ф n , a n , y n ) } is a set of arbitrary
unitary(2×2) -transforms of type
CS2( ф k , a k , Y k ) =
e i a k cos ф k e — i Y k sin ф k
e ik sin ф k
- e - i a k cos ф k
,
k = 1,..., n, and CS2 (ф, a, y) is a single transform, Alg is an algebra (for example, Clifford algebra).
In this work, we develop a new unified approach to the so-called generalized multi-parameter m – complementary sequences. This construction has a rich algebraic structure. It is associated not with the triple ( Z 2, ^ 2 , C ) , but with
-
1) ( Z m , U m , Alg ) , 2) ( Z m , { u m , u m ,..., U m } , Alg ) ,
-
3) ( Gr m , { u m , и m ,..., и m } ,Alg ) ,
-
4) ( { Gr m , Gr m ,..., Gr m } , { u m , u m ,..., u m } , a lg ) .
n
m
where
= u m ( ф о , ф О ,
is the Jacobi
...
m — 1 m
, ф q ) = u m ( ф q ) = ПП J ( ф ns ) ,
r = 1 s = r + 1
r
s
s
r
J ( ф r ,s ) =
r 1 - |
0 |
0 |
- 0 " |
|
0 - |
c ( ф r , s ) |
s ( ф r , s ) |
- 0 |
|
0 - |
s ( ф r , s ) |
- С ( ф r , s ) |
- 0 |
|
v 0 - |
0 |
0 |
- 1 ^ |
, orthonormal rotation with reflection,
,...,
ф^ = (фо, ф1,..., фq),..., ф q = (фо, ф,
parameters, q = C m = m ( m — 1) / 2,
ф q ) are the Jacobi c ( ф r , s ) = cos ( ф r , s ),
s ( ф r , s ) = sin ( ф r , s ).
The rest of the paper is organized as follows: in Section 2, the object of the study ( Golay – Rudin – Shapiro m -ary sequences) is described. In Section 3 we propose method based on new generalized iteration rule with n unitary ( m × m )-transforms U 1 m , U 2 m ,..., U n m and single group Z m . Then we generalize the previously method on n unitary ( m × m )-transforms U 1 m , U 2 m ,..., U m n and on n finite groups { Gr m , Gr 2 ,..., Gr m, } - In Section 5 we derive fast algorithms for binary Golay transforms.
The object of the study.New iteration construction for original Golay sequences
We begin by describing the original Golay m -complementary sequences.
Definition 1 . A generalization of the Golay complementary pair, known as the Golay m-Complementary m-element Set (m- GCS ) of complex-valued sequences [11]
como(t) := (co(O), co(1), ..., co(m -1)), m-GCS = (
com i ( t ) : = ( C i (O), C 1 (1), ..., c 1 (m - 1) ) ,
....................................................................., com m-1 (t) := (cm-1(0), cm-1(1),..., cm-1( m -1))
is defined by m ^ COR k ( t ) = m -5 ( t ), m -1| COM 1 ( z )| 2 = m , k =0 k =0
where {CORk (t)}m=0 are the periodic autocorrelation functions of {comk (t)}m=1 and COMk (z) = Z {comk (t)} are their Z - transforms.
We use two symbols ane[0,mn-1-1] = Zmn and tne[0,mn-1-1] = Zmn for numeration of Golay sequences and discrete time, respectively. For integer ane[0, mn-1-1] = Zmn and tn€'0, mn-1-1] = Zmn we shall use m-arycodes an = (a1,a2,...,an), tn = (t1,t2,...,tn), where a1t1e{0,1,^,m-1} = Zm, i=1,2,...,n.
Let an = (a1,a2,...,an) and tn = (t1,t2,...,tn) be m-ary codes, then define an = |an| = Aan-i+1 mi-1, and tn = |tn| = A tn_м mn-i i =1
as integers whose m-ary codes are an = (aba2,...,an) and tn = (t1,t2,...,tn), where an, t1 are less significant bits (LSB) and a1, tn are most significant bits (MSB) of a n = (a1, a 2,..., a n) and
Obviously, a1 = (a1) € Zm, a2 =(61,a2)€Zm xZm = Z2, a 3 =(a 2, a3 )€ Zm x zm = zm, ,
an = (an-1, an) € z m1 x zm = zm t = (t1 ) € Z m , t2 = ( t1, t2 ) € Zm X Zm = Zm , t3 = ( t2, t3 ) € Zm X Zm = Zm ,
( t 1, t 2,..., tn ) , respectively.
a 1 = a € Z m ,
( ab a 2 ) € Z m X Z m , ( a 2, a 3 ) € Z m 2 x Z m ,
.............................,
( a n -1 , a n ) € Z - 1 x Z m ;
t 1 = t 1 € Z m ,
( t 1 , t 2 ) € Z m x Z m ,
( t 2 , 1 3 ) € Z m 2 x Z m ,
...................................................., ..........................., tn =( t„-1, tn )€ Zm. x Zm = Zm , (t n-1, tn )€ Z mn., x Z m .
Let {com^n^(tn+1)} be mn+1-element set of m complementary sequences (of length mn+1), where an+1, tn+1 = 0,1,.., mn+1-1 They form rows of a (mn+1Xmn+1) -matrix G[n„+1] = Г com,n+1](t„+1)! , that is called the m +1 L an+1 n+1 7_lan+,.tn+, =0, m-Golay matrix. Here index [n+1] shows that Golay matrix have been obtained on the n+1 iteration step. We are going to group these rows (sequences) as mn+1 -1
com
[ n +1]
( a n + 1 )
a n + 1 =0
( t n +1 )

^ m -1 A m n -1
Ecom' a+1an+,)(t n+1) = EE y_a n+1 =0 / a n =0
Let us to select the more fine structure of the m -Golay matrix:
com ' n a + '0)( t n +1 ) com ' n a + j])( t n +1 )
. com ( n a + m -1) ( t n +1 )
com( "a + - 11]0,0)( t n +1 )
com ' 21’0,1) ( t n +1 )
m n + - 1 mn-1 c ' n +1] — 1 1 1 ——' n +1] \ _ lll G m n + 1 = r"E com( a n + 1 )( t n +1 ) = rE |
com ' n a + '0)( t n +1 ) com ' n a + 11])( t n +1 ) |
m n -1 -1 = ffl |
r m -1 E |
com ' 2А ^^ n +1 ) com( a +A n 1)( t n +1 ) |
> |
m n - 1 -1 = в |
a n + 1 =0 a n = 0 |
..................... . com ' "a + m -1)( t n +1 ) . |
a n - 1 =0 |
" ■ =0 V |
...................... _ co m ( n a +A n m -1)( t n +1 ) . |
V |
a n - 1 =0 |
com ' n a +A. m -1)( t n +1 ) com ' n a + - i t n +1 ) com ' A , ]1,1)( t n +1 )
...
com ' n a +A, m -1)( t n +1 )
com ' n a +A-1,0)( t n +1 ) com ' n a +1’ m -11)( t n +1 )
com ' a +A-1 m -1)( t n +1 )
Example 1. For n = 1 and n =2 we have, respectively,
G 31 1 ] =[ c °m a 1 1 ] ( t 1) ] a 1, t 1=0 = й com a ] ( t i ) = a i =0
The matrix G [ m n „ + ! ] is constructed by an iteration construction. The initial matrix G [ m 1 1 ] is formed by starting with an arbitrary unitary ( m×m )-matrix (in manyparameter form or not)
Example 2 . The initial matrix G [ m 1 1 ] can be the Fourier transform on Abelian group Z m :
G [1] = m 1
com [ 0 1] ( t 1 )
com1 [1] ( t 1 )
com [ 2 1] ( t 1 )
. com m L1 ( t 1 )
1 |
1 |
1. |
.. 1 |
1 |
б 1 ' 1 |
б 12 . |
.. б 1( m -1) |
1 |
б 2 ' 1 |
б 22 . |
о 2-( m -1) .. б |
1 c ( m -1)-1 q( m -1)'2 c( m -1)'( m -1)
1 Б Б ... Б
where б m = m 1 e A 1g , com 1 , '1 (t ) = ( 1, б k '1 , б k '2 ,..., б k '( m 1) ) , ( k =0,1,., m -1) are characters Z m . □
It is easy to check that
(|COM o ( z )|2 + |COM 1 ( z )|2 + ... + |COM m -1 ( z )|2 ) z 1 = m .
Indeed, m-1 , m-1
ZlCOMk(z)| =ZCOMk(z)COM (z) = k=1
m -1 Л m -1 Л ( m -1
= Z | Z a k ( t ) z Z a k ( * ) z1
k =1 V t =0 7 V s =0
m-1 m-1 ( m-1 A m-1 m-1
= ZZ| Zak(t)a(S) Izz =Z£31-z = ZIz|2t, s=0 t=0 V k=0 J s=0 t=0
m -1
since Z a k ( t ) a k ( s ) = 3 1 - S is true for an arbitrary unitary k =0
(orthogonal) matrix. Hence,
( m -1 A ( m -1
|ZI COMk (z )2| =|ZI z2 t
V k =1 Ум =1 V t =0
and initial sequences in the form of rows of an unitary matrix (in particular case, in the form of characters com k ( t 1 ) = (1, б k ' 1, б k ' 2,..., б k ' ( m -1)) of cyclic group Z m ) are the Golay m -complementary sequences.
Methods
The matrix Gm^1 is constructed by an iteration construction rj2 [13 rjn+1
U m U m U m
G m 1 ( U m ) ^ G m ] ( U m , U2 , ) ^ .... ^ С^Ш ,..., U m , U m +1 ), (4)
where wn+1 :={um,..., um, u m+1} = {Wn, иm+1}, Wn :={Um,...,иm}.
Here U m ( ф q ) = [ A a ( 1 1 Ф q ) ] m t =0 e SU (A 1g , m ) ( s = 1, 2,…, n ) are a sequence of unitary many-parameter ( m × m ) -transforms, belonging to the special unitary group SU(Alg , m ), where s =1,2,., n +1 and A q ( 1 1 ф q ) are Alg- valued many-parameter sequences.
Let us assume that we have m -Golay matrix G [ m ,]( U 1 ,..., U n ) = G m n n ](W n ) (depending on n previous transforms U 1 m ,..., U n m ). We need to construct the next m -Golay matrix G m n :1] ( U m ,..., U n +1 ) = G [ m +!] (W „ +1 ) using only G m ] ( U m ,..., U m ) and U m +1. We are going to use for m -Golay matrix G m n 1 (W n ) the same structure as in (1):
m n -1
G m ](W n ) = ffl com ( a n ) ( t n\U „ ) = a n =0
mn -1
= ffl
a n = 0
com ' a n -1 ,0)( t n \ w n ) com( a n -1 ,1)( t n \ w n )
com S a n -1 , m -1)( t n \ W n )
For constructing G[mn„+!](Wn+1) from G[m„1(Wn )we take each complementary set in the form m -GCS[ n ] (Un ) =
com( а П - 1 ,0)( t n I U n ) com ( a n - 1 ,1) ( t n 1 U n )
com a n - 1 , m -1)( t n | U n )
and construct m shifted versa of their components
/ m -GCS [ n i ( U n ) ^
X where
m -GCS a n '=0 ( U n . ) , m -GCS^ ( U n . ) ,
m -GCS L n n l m -1 ( U n +1 ) ,
p a n m
co m ( a n - 1 ,0) ( t n | U n ) com al 1 ,1)( t n | U n )
com ( a +10) ( t n +1 | и +1 ) com a + ^( t n+1\Un +1 )
y (6)
com( a n - 1 , m -1)( t n 1 U n )
co m ( a +1 m -1)( t n +1 \ U n +1 )
Here a n = 0,1,..., m - 1, P m a n is the cyclic permutation
operator on a n positions (modulo m ), T tm " s is the shift op-
erator on mns positions T m"sf ( t n ) : = f ( t n + mn s), P m is
transposed matrix of P m .
According to (1) we obtain
com
mn -1
G [ m n :1] ( и n +1 ) = щ
n
=0
x
com
_(a+'0) ( t n + 1 \ u n +1 )
*(a+ n + 1 \ u n +1 )
co m ( a +1 m -1)( t n +1 \ u n +1 )
I t n
A
mn -1
Штт n +1
a n =0
com
com
com [
P a,
m
n
•
T 1 m' t n
n
T ( m - !) • m n t n
—w
. P a n m
x (7)
- 1 ,0) ( t
- 1 ,1) ( t
n - 1
I U n ) I U n )
( t n \U n )
,
and, consequently, com(a+11] an ,an+1)(t n+1\Un+1) =
= У an +1 (₽„ ) T m" (P n ea n ) com [ n ] B ,( t„ \ U„).
/ a n + 1 v r n/ t n ( a n - 1 , p n )\ n I n/
P n =0
Since t n +1 = ( t n , t n +1 ), then believing t n +1 = a n ®P n , we
m obtain:
c om( a n- ^a n ,a„ 1 ) ( t n +1 \ U n +1 ) co m ( a n - ^a n ,a„ 1 )( t n , tn +1 \ U n +1 )
m -1
= Z <1 (an ®tn+1)TT" 1com[an„an®,„ +)(tn \ U„) = (8) tn+1=0 m m m-1
= Z Aan+1(an ® tn+1)ТГ"+1com(an-1,an etn+ 1)(t n + mntn+1 \ Un ). mm tn+1 =0
So, com( a+']an,a n+1)(t n , tn+1 \ Un +1) =
= A a+1 ( a n e t n +1 ) • com( a П - ,a n e t n + 1 ) ( t n \ U n )- m m
It is finally recurrent relation between m -complementary sequences of G [ m n „ +J] [ U n + 1 ] and G m n 1 [ U n ] . From (9) we obtain expression for com a n n + 1 1] ( t n + 1 \ U n + 1):
n com(a+11])(tn+1)=nAaa+a ets+2(ase ts+1), a0, tn+2=0.(10) mm s=1
In particular, for matrices in the form of the Fourier transform U m = U 2 m = ... = U mm = [ s mt ] we have
com [”+1]„ „ ,( t„ +1) = com [ n +1]„ „ ,( t„ , t „+,) =
( a n - 1 ,a n ,a n + 1)V n + l 7 ( a n - 1 ,a n ,a n + 1)V n , n + l 7
Z (a s e t s + 1 ) ( a s + 1 e t s + 2 )
mm
= F s = 1
s m .
Where « 0 , t n +2 ^ 0. New sequences in (9) are orthogonal and m -complementary sequences.
Generalizations
In this section, we introduce generalized m -complementary sequences. It is based on using new permutation matrices P m a n in (7). The mappings g : X ^ X of a set X into (or onto) itself are of particular importance. They form the following set Xх : = { g \ g : X ^ X }.
Definition 2. One-to-one map from a set X to itself g : X ^ X , x ‘ = g ( x )= g ° x is called a transformation of the set X.
If X is finite and consists of m elements (for example, X = {0, 1, 2,…, m }) then a transformation of the set X is called a permutation. As is well known, the set of all permutations of X forms a group S m = Sum { X } in which the product on of a pair of permutations ст, n is defined by ( an )° x : = o °( n °x).
If X contains more than two elements, S m is not commutative. Any subgroup of S m is called a permutation group on X , or a group of permutations of X . We shall say that the permutations in Sym (X) act or operate on the elements of X .
Definition 3. A homomorphism of a group on a set h: Gr ^ Sym { X } is called a permutation representation (or realization) of .
The image h ( Gr ) c Sym { X } is a permutation group and the elements of are represented as permutations of . A permutation representation is equivalent to an action of on the set : To specify an action, we need to define for element g e Gr the corresponding permutation h ( g ) of , that is, h ( g )° x for any x e X . We are going to write h ( g )° x
in the short form g ° x and to call the group of transformations of . The pair {) is called a space with transformation group the elements x e X are called points of the space .
Definition 4. If is a permutation group of degree , then the permutation representation of is the linear permutation representation of : P : Gr ^ GL m (Л ig ) which maps to the corresponding permutation matrix P ( g ) , .
That is, acts on by permuting the standard basis vectors { e n } n Е х е Л ig m such that
P( g) en = eg ° n = en' e{ en } neX , where P(g) 's are the operators in Лigm which define the above mentioned linear representation.
Example 3 . Let
X = [0,1,..., m - 1], Gr = Z m = /{0,1,..., m - 1},®\
m
1 " |
" 1 " |
|
1 |
1 |
|
,..., P ( m - 1) = |
||
1 |
||
1 |
1 |
In particular, for m =2 and m = 3we have

In expression (7) was used linear permutation representation P(g) of only one group . However, we can use others finite groups of given order m. Let Gr = Grm = {g a}m=0 be a group of given order m and {P( g a )}m=1. Then mn-1
Gm+!](Un+1; Grm) = Щ an =0
com ( a n ,0) ( t n |U n +1 ; Gr m ) com ( a n .„ ( t n | U n + 1; Gr „ )
com [ a n , m -1) ( t n \ U n +1 ; Gr m )
mn -1
= № an =0
n +1 m
P m ( g a n ) '
Itn rp 1-mn
T t n

- P m ( g a . )
com[ n a n - , .0)( t n\ U n ; Gr m ) com ( a n - 1,1) ( t n I U n ; Gr, )

com [ n a n . , . m -1) ( t n \ U n ; G r m )
is the Golay matrix associated with triple ( Gr m ,{ U m , U m ,..., U m +1}, Л ig ) .
matrices associated with two triples
Example 4. For m =4 we have two groups: Z 4 = {0, 1, 2, 3} and Z 2 × Z 2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. For both groups we have the following permutation representations:
" 1 |
" |
1 " |
" |
1 " |
" 1 " |
|||||
1 |
1 |
1 |
1 |
|||||||
P (0) = |
1 |
, P (1) = |
1 |
, P (2) = |
1 |
, P (3) = |
1 |
|||
. |
1 J |
_ 1 |
. |
- |
1 . |
- 1 J |
||||
" 1 |
" |
" |
1 |
" |
1 " |
" 1 " |
||||
1 |
1 |
1 |
1 |
|||||||
P (0,0) = |
1 |
, P (0,1) = |
1 |
, P (1,0) = |
1 |
, P (1,1) = |
1 |
|||
1 . |
1 |
1 . |
- 1 J |
Hence, we can construct two different set of Golay
1) ( Z 4 ,{ u m , u m ,..., и m +1},л ig ) ,
2) (Z2 XZ2,{um,um,...,um+1},лig), respectively. □
Let Qn+i :={Gr™,Gr2,...,Grm,Grm+1}={Qm,Grm+1} be a set of arbitrary groups of given order m —1 m-1
m : Gr1 = ggM ,...,Gr”+1 = ggI } . Then we m l6al fa: =0 , , m t6™n+1 lan+1 =0
can use on each kthiteration permutation representations {Pm(gak )}m 1 for Grm . In this case, we obtain the following Golay transform mn -1
Gm+PC Un+i;Q„+1) = Щ an =0
com ( a n ,0) ( t n |U „ +1 ; Q n +1 ) com ( a n ,n ( t n | U „ + i ; Q „ +1 )
com( a , m —1)( t n | U n +1 ; Q n +1 )
I t
n
mn -1
= В U an =0
n +1 m
P m +1 ( g a n ) ■
It is associated with triple
rp 1 mn
T t n

( { Gr m , Gr m ,..., Gr n +1 } , { u m , u m ,..., и m +1 } , л ig ) .
n +1 m
( g a n )
com( a n — 1 ,0)( t n | U n ; Q n ) com ( a n — 1 ,1) ( t n | U n ; Q n )
com ( a n m —1) ( t n |U „ ;Q n )
com(£ПП) ( t n +1 ) = com( a +1 a n ,a n + 1 ) ( t n , t n +1 ) =
Fast Golay transforms
Let us consider expressions (8) and (9) for m =2 ( i.e., expressions (6) and (7) from our work [7]):
=
£(
—
1)
(
a
-
’-
)-
'
[ n +1] l = (-17' n . t n +1 ) a n + 1тт[ n ] x
Co m ( a n — 1 ,a n ,a n + 1 ) ( t n , t n +1 ) ( 1) com a n — 1 ,a n ® t n + 1 ) X
x ( t n ) = ( — 1) a n a n + 1 ( — 1) a n + 1 t n +1 com ( n I 1 ,a n ® t n+ 1 ) ( t n )
and find matrix representations of these expressions. We introduce the following G -parametrized (2 n x2 n )-matrix:
2 n -1
CT ft [ n ] ,__ I I J p CT
G 2 n := Г~Т г 2
a n = 0
com[ a n — 1 ,0) ( t n ) com ( a n — 1 ,1) ( t n )
2 n -1
0[ n ] 0
G 2 n ПЕ г 2
n = 0
2 n -1
1[ n ] 1
G 2 n I I Г 2
a n = 0
2 n -1
G 2 n ]= Щ a n = 0
2 n -1
1 G 2 n ]= В n = 0
com ( n , n — 1 ,0) ( t n ) . com ( n , n — 1 ,1) ( t n ) _ , com ( a n — 1 ,0) ( t n ) com ( a n —„a( t n ),
ст = 0
<
com i a n — , .0) com[( n ] 1)
com ( a n . 1 ,0) com[( n ] 1)
2 n -1
0 G 2 n ] = В n =0
2 n -1
1 G 2 n ] = В n =0
( t n ), ( t n ) J
( t n )1, ( t n )
ст = 0,
com S a n — 1 ,0) com [ ( n ] 1)
com [ n ] ( a n — 1 ,1)
com [ n ]
( a n — 1 ,0)
. ( t n ) , ( t n ) J ,
( t n ) 1 , ( t n ) ,
G = 0,
G = 1,
and construct the direct sum of introduced matrices
G n ; 1] = . (G) G 2 n ] = G=0
(0) [ n ]
2 n
(1) [ n ]
2 n
( I 2 n — 1 ® P 2 ) G 2 " n ]
2 n — 1 -1
В 1
n — 1 =0 L
com( a n — 1 ,0)( t n ) com( a n — 1 ,1)( t n )
2 n —1 -1
Список литературы Many-parameter m-complementary Golay sequences and transforms
- Golay, M.J.E. Multi-slit spectrometry/M.J.E. Golay//Journal of the Optical Society of America. -1949. -Vol. 39, Issue 6. -P. 437-444. - DOI: 10.1364/JOSA.39.000437
- Golay, M.J.E. Complementary series/M.J.E. Golay//IRE Transaction on Information Theory. -1961. -Vol. 7, Issue 2 -P. 82-87. - DOI: 10.1109/TIT.1961.1057620
- Golay, M.J.E. Sieves for low autocorrelation binary sequences/M.J.E. Golay//IEEE Transactions on Information Theory. -1977. -Vol. 23, Issue 1. -P. 43-51. - DOI: 10.1109/TIT.1977.1055653
- Shapiro, H.S. Extremal problems for polynomials and power series: ScM.Thesis/Shapiro Harold S. -Massachusetts, Massachusetts Institute of Technology, 1951. -77 p.
- Shapiro, H.S. A power series with small partial sums/H.S. Shapiro//Notices of the American Mathematical Society. -1958. -Vol. (6)3. -P. 366-378.
- Rudin, W. Some theorems on Fourier coefficients/W. Rudin//Proceedings of the American Mathematical Society. -1959. -Vol. 10, No 6. -P. 855-859. - DOI: 10.2307/2033608
- Labunets, V.G. Multiparameter Golay 2-complementary sequences and transforms/V.G. Labunets, V.P. Chasovskikh, E. Ostheimer. In: Information Technologies and Nanotechnologies. -Samara: "Novaya Tehnika" Publisher, 2018. -P. 1013-1022.
- Labunets, V.G. Multiparameter Golay m-complementary sequences and transforms/V.G. Labunets, V.P. Chasovskikh, E. Ostheimer. -In: Information Technologies and Nanotechnologies. -Samara: "Novaya Tehnika" Publisher, 2018. -P. 1005-1012.
- Jacobi, C.G.J. Uber ein leichtes verfahren die in der theorie der sacularstorungen vorkommendern gleichungen numerische aufzulosen/C.G.J. Jacobi//Jurnal fur die reine und angewandte Mathematik. -1846. -Vol. 30. -P. 51-94.
- Brent, R.P. The solution of singular-value and symmetric eigenvalue problems on multiprocessor Arrays/R.P. Brent, F.T. Luk//SIAM Journal on Scientific and Statistical Computing. -1985. -Vol. 6, Issue 1. -P. 69-83. - DOI: 10.1137/0906007
- Lei, Z.X. Some properties of generalized Rudin-Shapiro polynomials/Z.X. Lei//Chinese Annals of Mathhematics. -1991. -Vol. 2. -P. 145-153.