Many-parameter m-complementary Golay sequences and transforms

Автор: Labunets Valeri Grigorievich, Chasovskih Victor Petrovich, Smetanin Yuri Gennadievich, Ostheimer Rundblad Ekaterina

Журнал: Компьютерная оптика @computer-optics

Рубрика: Численные методы и анализ данных

Статья в выпуске: 6 т.42, 2018 года.

Бесплатный доступ

In this paper, we develop the family of Golay–Rudin–Shapiro (GRS) m-complementary many-parameter sequences and many-parameter Golay transforms. The approach is based on a new gen-eralized iteration generating construction, associated with n unitary many-parameter transforms and n arbitrary groups of given fixed order. We are going to use multi-parameter Golay transform in Intelligent-OFDM-TCS instead of discrete Fourier transform in order to find out optimal values of parameters optimized PARP, BER, SER, anti-eavesdropping and anti-jamming effects.

Complementary sequences, many-parameter orthogonal transforms, fast algorithms, ofdm systems

Короткий адрес: https://sciup.org/140238482

IDR: 140238482   |   DOI: 10.18287/2412-6179-2018-42-6-1074-1082

Текст научной статьи Many-parameter m-complementary Golay sequences and transforms

Binary ± 1-valued Golay – Rudin – Shapiro sequences (2-GRSS) associated with the cyclic group Z2n were introduced independently by Golay [1, 2, 3] in 1949-1951, Shapiro [4, 5] and Rudin [6] in 1951.M.J.E.Golay [2] introduced the general concept of “complementary pairs" of finite sequences all of whose entries are ± 1. For building the classical FGRST in bases of classical 2-GRSS the following actors are used: 1) Abelian group Z2, 2) 2-point Fourier transform ^2, and 3) complex field С, i.e., these where {Grm,Gr2,...,Grm} is a set of arbitrary finite groups of given order m Here {Um, Um,..., U m} is a set of arbitrary unitary (m×m) – transforms represented in the many-parameter Jacobi-Euler form [9– 10]:

m 1    m

um = um (фо, ф1,..., ф^ )=um (ф^ )=п П J (ф’г , s), r=1 s=r+1

m—1   m um = u m(фo2, ф?,..., ф2 )=um (фq)=пп J(ф 2, s), r=1 s=r+1

transforms are associated with the triple ( Z 2 , ^ 2 , C ).

In previous papers [7, 8], we have shown a new unified approach to the GF ( p ) -, or Clifford-valued complementary sequences and Golay transforms. It was associated not with the triple ( Z 2 , ^ 2 , C ), but with triples

( Z 2 , { CS 2 ( ф 1 ,ab Y i ), CS2 2 ( ф 2, « 2 , у 2 ),...,

CS П ( ф , a , у n ) } , A lg )

and ( Z 2 ,CS2( ф , a , y ), Alg ) , where { CS 2 ( ф 1 ,ab Y i ),

CS2 2 ( ф 2, a 2, Y 2 ),..., CS П ( ф n , a n , y n ) } is a set of arbitrary

unitary(2×2) -transforms of type

CS2( ф k , a k , Y k ) =

e i a k cos ф k e i Y k sin ф k

e ik sin ф k

- e - i a k cos ф k

,

k = 1,..., n, and CS2 (ф, a, y) is a single transform, Alg is an algebra (for example, Clifford algebra).

In this work, we develop a new unified approach to the so-called generalized multi-parameter m – complementary sequences. This construction has a rich algebraic structure. It is associated not with the triple ( Z 2, ^ 2 , C ) , but with

  • 1)    ( Z m , U m , Alg ) , 2) ( Z m , { u m , u m ,..., U m } , Alg ) ,

  • 3)    ( Gr m , { u m , и m ,..., и m } ,Alg ) ,

  • 4)    ( { Gr m , Gr m ,..., Gr m } , { u m , u m ,..., u m } , a lg ) .

n

m

where

= u m ( ф о , ф О ,

is the Jacobi

...

m 1 m

, ф q ) = u m ( ф q ) = ПП J ( ф ns ) ,

r = 1 s = r + 1

r

s

s

r

J ( ф r ,s ) =

r 1 -

0

0

- 0 "

0 -

c ( ф r , s )

s ( ф r , s )

- 0

0 -

s ( ф r , s )

- С ( ф r , s )

- 0

v 0 -

0

0

- 1 ^

, orthonormal rotation with reflection,

,...,

ф^ = (фо, ф1,..., фq),..., ф q = (фо, ф,

parameters, q = C m = m ( m 1) / 2,

ф q ) are the Jacobi c ( ф r , s ) = cos ( ф r , s ),

s ( ф r , s ) = sin ( ф r , s ).

The rest of the paper is organized as follows: in Section 2, the object of the study ( Golay – Rudin – Shapiro m -ary sequences) is described. In Section 3 we propose method based on new generalized iteration rule with n unitary ( m × m )-transforms U 1 m , U 2 m ,..., U n m and single group Z m . Then we generalize the previously method on n unitary ( m × m )-transforms U 1 m , U 2 m ,..., U m n and on n finite groups { Gr m , Gr 2 ,..., Gr m, } - In Section 5 we derive fast algorithms for binary Golay transforms.

The object of the study.New iteration construction for original Golay sequences

We begin by describing the original Golay m -complementary sequences.

Definition 1 . A generalization of the Golay complementary pair, known as the Golay m-Complementary m-element Set (m- GCS ) of complex-valued sequences [11]

como(t) := (co(O), co(1), ..., co(m -1)), m-GCS = (

com i ( t ) : = ( C i (O),    C 1 (1), ..., c 1 (m - 1) ) ,

....................................................................., com m-1 (t) := (cm-1(0), cm-1(1),..., cm-1( m -1))

is defined by m ^ COR k ( t ) = m -5 ( t ), m -1| COM 1 ( z )| 2 = m , k =0                              k =0

where {CORk (t)}m=0 are the periodic autocorrelation functions of {comk (t)}m=1 and COMk (z) = Z {comk (t)} are their Z - transforms.

We use two symbols ane[0,mn-1-1] = Zmn and tne[0,mn-1-1] = Zmn for numeration of Golay sequences and discrete time, respectively. For integer ane[0, mn-1-1] = Zmn and tn€'0, mn-1-1] = Zmn we shall use m-arycodes     an = (a1,a2,...,an), tn = (t1,t2,...,tn), where a1t1e{0,1,^,m-1} = Zm, i=1,2,...,n.

Let an = (a1,a2,...,an) and tn = (t1,t2,...,tn) be m-ary codes, then define an = |an| = Aan-i+1 mi-1, and tn = |tn| = A tn_м mn-i i =1

as integers whose m-ary codes are an = (aba2,...,an) and tn = (t1,t2,...,tn), where an, t1 are less significant bits (LSB) and a1, tn are most significant bits (MSB) of a n = (a1, a 2,..., a n) and

Obviously, a1 = (a1) € Zm, a2 =(61,a2)€Zm xZm = Z2, a 3 =(a 2, a3 )€ Zm x zm = zm, ,

an = (an-1, an) € z m1 x zm = zm t = (t1 ) € Z m , t2 = ( t1, t2 ) € Zm X Zm = Zm , t3 = ( t2, t3 ) € Zm X Zm = Zm ,

( t 1, t 2,..., tn ) , respectively.

a 1 = a € Z m ,

( ab a 2 ) Z m X Z m , ( a 2, a 3 ) Z m 2 x Z m ,

.............................,

( a n -1 , a n ) Z - 1 x Z m ;

t 1 = t 1 Z m ,

( t 1 , t 2 ) Z m x Z m ,

( t 2 , 1 3 ) Z m 2 x Z m ,

...................................................., ..........................., tn =( t„-1, tn )€ Zm. x Zm = Zm ,     (t n-1, tn )€ Z mn., x Z m .

Let {com^n^(tn+1)} be mn+1-element set of m complementary sequences (of length mn+1), where an+1, tn+1 = 0,1,.., mn+1-1 They form rows of a (mn+1Xmn+1) -matrix G[n„+1] = Г com,n+1](t„+1)!         , that is called the m +1      L        an+1     n+1 7_lan+,.tn+, =0, m-Golay matrix. Here index [n+1] shows that Golay matrix have been obtained on the n+1 iteration step. We are going to group these rows (sequences) as mn+1 -1

com

[ n +1]

( a n + 1 )

a n + 1 =0

( t n +1 )

^ m -1                          A m n -1

Ecom' a+1an+,)(t n+1) = EE y_a n+1 =0                          / a n =0

Let us to select the more fine structure of the m -Golay matrix:

com ' n a + '0)( t n +1 ) com ' n a + j])( t n +1 )

. com ( n a + m -1) ( t n +1 )

com( "a + - 11]0,0)( t n +1 )

com ' 21’0,1) ( t n +1 )

m n + - 1                              mn-1

c ' n +1] 1 1 1 ——' n +1]      \ _ lll

G m n + 1 = r"E com( a n + 1 )( t n +1 ) = rE

com ' n a + '0)( t n +1 ) com ' n a + 11])( t n +1 )

m n -1 -1

= ffl

r

m -1

E

com ' 2А ^^ n +1 ) com( a +A n 1)( t n +1 )

>

m n - 1 -1

= в

a n + 1 =0                           a n = 0

.....................

. com ' "a + m -1)( t n +1 ) .

a n - 1 =0

" =0

V

......................

_ co m ( n a +A n m -1)( t n +1 ) .

V

a n - 1 =0

com ' n a +A. m -1)( t n +1 ) com ' n a + - i t n +1 ) com ' A , ]1,1)( t n +1 )

...

com ' n a +A, m -1)( t n +1 )

com ' n a +A-1,0)( t n +1 ) com ' n a +1 m -11)( t n +1 )

com ' a +A-1 m -1)( t n +1 )

Example 1. For n = 1 and n =2 we have, respectively,

G 31 1 ] =[ c °m a 1 1 ] ( t 1) ] a 1, t 1=0 = й com a ] ( t i ) = a i =0

2 rcom(2a],0)(t 2) 1 G32] = Й com(a],1)(t 2) = a1=0 _com(a],2)(t2)_ com(20]0)(t 2) com(20]1)(t 2) com(20]2)(t 2) . □ com(2,]0)(t 2) com(2]1)(t 2) com(2]2)(t2) com(22]0)(t 2) com(2]1)(t2) _com(2,2)(t 2) _ com[(0]) (t1) com[(11]) (t1) com[(2]) (t1)

The matrix G [ m n + ! ] is constructed by an iteration construction. The initial matrix G [ m 1 1 ] is formed by starting with an arbitrary unitary ( m×m )-matrix (in manyparameter form or not)

U m = A0(0) [Aa (t)] := A0(1) G[1] = m1 A0(2) . com01](t1) com[11] (t1) n -1) .............. comm-1 (t1)_ ...    A0( A1(0) A1(1) A1(2) ...    A1(m - 1) A2(0) A2(1) A2(2) ...   A2( m - 1) ... Am-1(0) Am-1(1) Am-1(2) ...              . ...   Am -1( .. m -1) where A„ (t) e A 1g, coma] (t) = (A (0), A^ (1),..., ,L (m -1)).

Example 2 . The initial matrix G [ m 1 1 ] can be the Fourier transform on Abelian group Z m :

G [1] = m 1

com [ 0 1] ( t 1 )

com1 [1] ( t 1 )

com [ 2 1] ( t 1 )

. com m L1 ( t 1 )

1

1

1.

.. 1

1

б 1 ' 1

б 12      .

..       б 1( m -1)

1

б 2 ' 1

б 22     .

о 2-( m -1)

.. б

1     c ( m -1)-1      q( m -1)'2            c( m -1)'( m -1)

1 Б Б ... Б

where б m = m 1 e A 1g , com 1 , '1 (t ) = ( 1, б k '1 , б k '2 ,..., б k '( m 1) ) , ( k =0,1,., m -1) are characters Z m . □

It is easy to check that

(|COM o ( z )|2 + |COM 1 ( z )|2 + ... + |COM m -1 ( z )|2 ) z 1 = m .

Indeed, m-1                , m-1               

ZlCOMk(z)| =ZCOMk(z)COM (z) = k=1

m -1 Л m -1          Л ( m -1

= Z | Z a k ( t ) z Z a k ( * ) z1

k =1 V t =0           7 V s =0

m-1 m-1 ( m-1               A          m-1 m-1

= ZZ| Zak(t)a(S) Izz =Z£31-z   = ZIz|2t, s=0 t=0 V k=0               J          s=0 t=0

m -1

since Z a k ( t ) a k ( s ) = 3 1 - S is true for an arbitrary unitary k =0

(orthogonal) matrix. Hence,

( m -1                 A         ( m -1

|ZI COMk (z )2|    =|ZI z2 t

V k =1                  Ум =1 V t =0

and initial sequences in the form of rows of an unitary matrix (in particular case, in the form of characters com k ( t 1 ) = (1, б k ' 1, б k ' 2,..., б k ' ( m -1)) of cyclic group Z m ) are the Golay m -complementary sequences.

Methods

The matrix Gm^1 is constructed by an iteration construction rj2                               [13       rjn+1

U m U m U m

G m 1 ( U m ) ^ G m ] ( U m , U2 , ) ^ .... ^ С^Ш ,..., U m , U m +1 ), (4)

where wn+1 :={um,..., um, u m+1} = {Wn, иm+1}, Wn :={Um,...,иm}.

Here U m ( ф q ) = [ A a ( 1 1 Ф q ) ] m t =0 e SU (A 1g , m ) ( s = 1, 2,…, n ) are a sequence of unitary many-parameter ( m × m ) -transforms, belonging to the special unitary group SU(Alg , m ), where s =1,2,., n +1 and A q ( 1 1 ф q ) are Alg- valued many-parameter sequences.

Let us assume that we have m -Golay matrix G [ m ,]( U 1 ,..., U n ) = G m n n ](W n ) (depending on n previous transforms U 1 m ,..., U n m ). We need to construct the next m -Golay matrix G m n :1] ( U m ,..., U n +1 ) = G [ m +!] (W +1 ) using only G m ] ( U m ,..., U m ) and U m +1. We are going to use for m -Golay matrix G m n 1 (W n ) the same structure as in (1):

m n -1

G m ](W n ) = ffl com ( a n ) ( t n\U ) = a n =0

mn -1

= ffl

a n = 0

com ' a n -1 ,0)( t n \ w n ) com( a n -1 ,1)( t n \ w n )

com S a n -1 , m -1)( t n \ W n )

For constructing G[mn„+!](Wn+1) from G[m„1(Wn )we take each complementary set in the form m -GCS[ n ] (Un ) =

com( а П - 1 ,0)( t n I U n ) com ( a n - 1 ,1) ( t n 1 U n )

com a n - 1 , m -1)( t n | U n )

and construct m shifted versa of their components

/ m -GCS [ n i ( U n ) ^

X where

m -GCS a n '=0 ( U n . ) , m -GCS^ ( U n . ) ,

m -GCS L n n l m -1 ( U n +1 ) ,

p a n m

co m ( a n - 1 ,0) ( t n | U n ) com al 1 ,1)( t n | U n )

com ( a +10) ( t n +1 | и +1 ) com a + ^( t n+1\Un +1 )

y (6)

com( a n - 1 , m -1)( t n 1 U n )

co m ( a +1 m -1)( t n +1 \ U n +1 )

Here a n = 0,1,..., m - 1, P m a n is the cyclic permutation

operator on a n positions (modulo m ), T tm " s is the shift op-

erator on mns positions T m"sf ( t n ) : = f ( t n + mn s), P m is

transposed matrix of P m .

According to (1) we obtain

com

mn -1

G [ m n :1] ( и n +1 ) = щ

n

=0

x

com

_(a+'0) ( t n + 1 \ u n +1 )

*(a+ n + 1 \ u n +1 )

co m ( a +1 m -1)( t n +1 \ u n +1 )

I t n

A

mn -1

Штт n +1

a n =0

com

com

com [

P a,

m

n

T 1 m' t n

n

T ( m - !) m n t n

—w

. P a n m

x (7)

- 1 ,0) ( t

- 1 ,1) ( t

n - 1

I U n ) I U n )

( t n \U n )

,

and, consequently, com(a+11] an ,an+1)(t n+1\Un+1) =

= У an +1 (₽„ ) T m" (P n ea n ) com [ n ] B ,( t„ \ U„).

/      a n + 1 v r n/ t n                     ( a n - 1 , p n )\ n I n/

P n =0

Since t n +1 = ( t n , t n +1 ), then believing t n +1 = a n ®P n , we

m obtain:

c om( a n- ^a n ,a„ 1 ) ( t n +1 \ U n +1 ) co m ( a n - ^a n ,a„ 1 )( t n , tn +1 \ U n +1 )

m -1

= Z <1 (an ®tn+1)TT" 1com[an„an®,„ +)(tn \ U„) = (8) tn+1=0              m                               m m-1

= Z Aan+1(an ® tn+1)ТГ"+1com(an-1,an etn+ 1)(t n + mntn+1 \ Un ). mm tn+1 =0

So, com( a+']an,a n+1)(t n , tn+1 \ Un +1) =

= A a+1 ( a n e t n +1 ) com( a П - ,a n e t n + 1 ) ( t n \ U n )- m m

It is finally recurrent relation between m -complementary sequences of G [ m n +J] [ U n + 1 ] and G m n 1 [ U n ] . From (9) we obtain expression for com a n n + 1 1] ( t n + 1 \ U n + 1):

n com(a+11])(tn+1)=nAaa+a ets+2(ase ts+1), a0, tn+2=0.(10) mm s=1

In particular, for matrices in the form of the Fourier transform U m = U 2 m = ... = U mm = [ s mt ] we have

com [+1]„ „ ,( t„ +1) = com [ n +1]„ „ ,( t„ , t +,) =

( a n - 1 ,a n ,a n + 1)V n + l 7              ( a n - 1 ,a n ,a n + 1)V n , n + l 7

Z (a s e t s + 1 ) ( a s + 1 e t s + 2 )

mm

= F s = 1

s m .

Where « 0 , t n +2 ^ 0. New sequences in (9) are orthogonal and m -complementary sequences.

Generalizations

In this section, we introduce generalized m -complementary sequences. It is based on using new permutation matrices P m a n in (7). The mappings g : X ^ X of a set X into (or onto) itself are of particular importance. They form the following set Xх : = { g \ g : X ^ X }.

Definition 2. One-to-one map from a set X to itself g : X ^ X , x = g ( x )= g ° x is called a transformation of the set X.

If X is finite and consists of m elements (for example, X = {0, 1, 2,…, m }) then a transformation of the set X is called a permutation. As is well known, the set of all permutations of X forms a group S m = Sum { X } in which the product on of a pair of permutations ст, n is defined by ( an x : = o °( n °x).

If X contains more than two elements, S m is not commutative. Any subgroup of S m is called a permutation group on X , or a group of permutations of X . We shall say that the permutations in Sym (X) act or operate on the elements of X .

Definition 3. A homomorphism of a group on a set h: Gr ^ Sym { X } is called a permutation representation (or realization) of .

The image h ( Gr ) c Sym { X } is a permutation group and the elements of are represented as permutations of . A permutation representation is equivalent to an action of on the set : To specify an action, we need to define for element g e Gr the corresponding permutation h ( g ) of , that is, h ( g x for any x e X . We are going to write h ( g x

in the short form g ° x and to call the group of transformations of . The pair {) is called a space with transformation group the elements x e X are called points of the space .

Definition 4. If is a permutation group of degree , then the permutation representation of is the linear permutation representation of : P : Gr ^ GL m ig ) which maps to the corresponding permutation matrix P ( g ) , .

That is, acts on by permuting the standard basis vectors { e n } n Е х е Л ig m such that

P( g) en = eg ° n = en' e{ en } neX , where P(g) 's are the operators in Лigm which define the above mentioned linear representation.

Example 3 . Let

X = [0,1,..., m - 1], Gr = Z m = /{0,1,..., m - 1},®\

m

P(0) = "1 1 1 1 , P(1)= " 1 1 1 1 , P(2) = Г 1 [ 1 1 J [ be the cyclic group of order m. Then

1              "

"                          1 "

1

1

,..., P ( m - 1) =

1

1

1

In particular, for m =2 and m = 3we have

In expression (7) was used linear permutation representation P(g) of only one group . However, we can use others finite groups of given order m. Let Gr = Grm = {g a}m=0 be a group of given order m and {P( g a )}m=1. Then mn-1

Gm+!](Un+1; Grm) = Щ an =0

com ( a n ,0) ( t n |U n +1 ; Gr m ) com ( a n .„ ( t n | U n + 1; Gr )

com [ a n , m -1) ( t n \ U n +1 ; Gr m )

mn -1

= № an =0

n +1 m

P m ( g a n ) '

Itn rp 1-mn

T t n

- P m ( g a . )

com[ n a n - , .0)( t n\ U n ; Gr m ) com ( a n - 1,1) ( t n I U n ; Gr, )

com [ n a n . , . m -1) ( t n \ U n ; G r m )

is the Golay matrix associated with triple ( Gr m ,{ U m , U m ,..., U m +1}, Л ig ) .

matrices associated with two triples

Example 4. For m =4 we have two groups: Z 4 = {0, 1, 2, 3} and Z 2 × Z 2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. For both groups we have the following permutation representations:

" 1

"

1 "

"

1 "

"                  1 "

1

1

1

1

P (0) =

1

, P (1) =

1

, P (2) =

1

, P (3) =

1

.

1 J

_ 1

.

-

1 .

-          1 J

" 1

"

"

1

"

1 "

"                  1 "

1

1

1

1

P (0,0) =

1

, P (0,1) =

1

, P (1,0) =

1

, P (1,1) =

1

1 .

1

1          .

- 1               J

Hence, we can construct two different set of Golay

1) ( Z 4 ,{ u m , u m ,..., и m +1},л ig ) ,

2) (Z2 XZ2,{um,um,...,um+1},лig), respectively.                                             □

Let Qn+i :={Gr™,Gr2,...,Grm,Grm+1}={Qm,Grm+1} be a set   of arbitrary groups   of   given order m —1                             m-1

m : Gr1 = ggM ,...,Gr”+1 = ggI }     . Then we m    l6al fa: =0 , , m       t6™n+1 lan+1 =0

can use on each kthiteration permutation representations {Pm(gak )}m 1 for Grm . In this case, we obtain the following Golay transform mn -1

Gm+PC Un+i;Q„+1) = Щ an =0

com ( a n ,0) ( t n |U +1 ; Q n +1 ) com ( a n ,n ( t n | U + i ; Q +1 )

com( a , m —1)( t n | U n +1 ; Q n +1 )

I t

n

mn -1

= В U an =0

n +1 m

P m +1 ( g a n )

It is associated with triple

rp 1 mn

T t n

( { Gr m , Gr m ,..., Gr n +1 } , { u m , u m ,..., и m +1 } , л ig ) .

n +1 m

( g a n )

com( a n 1 ,0)( t n | U n ; Q n ) com ( a n 1 ,1) ( t n | U n ; Q n )

com ( a n m —1) ( t n |U ;Q n )

com(£ПП) ( t n +1 ) = com( a +1 a n ,a n + 1 ) ( t n , t n +1 ) =

Fast Golay transforms

Let us consider expressions (8) and (9) for m =2 ( i.e., expressions (6) and (7) from our work [7]):

= £( 1) ( a - ’- )- 'n.,_„( tn + 2 'tn „), tn +1 =0                                                  2

[ n +1]                 l = (-17' n . t n +1 ) a n + 1тт[ n ]          x

Co m ( a n 1 ,a n ,a n + 1 ) ( t n , t n +1 ) ( 1)             com a n 1 ,a n ® t n + 1 ) X

x ( t n ) = ( 1) a n a n + 1 ( 1) a n + 1 t n +1 com ( n I 1 ,a n ® t n+ 1 ) ( t n )

and find matrix representations of these expressions. We introduce the following G -parametrized (2 n x2 n )-matrix:

2 n -1

CT ft [ n ] ,__ I I J p CT

G 2 n := Г~Т г 2

a n = 0

com[ a n 1 ,0) ( t n ) com ( a n 1 ,1) ( t n )

2 n -1

0[ n ]        0

G 2 n   ПЕ г 2

n = 0

2 n -1

1[ n ]         1

G 2 n      I I Г 2

a n = 0

2 n -1

G 2 n ]= Щ a n = 0

2 n -1

1 G 2 n ]= В n = 0

com ( n , n 1 ,0) ( t n ) . com ( n , n 1 ,1) ( t n ) _ , com ( a n 1 ,0) ( t n ) com ( a n —„a( t n ),

ст = 0

<

com i a n , .0) com[( n ] 1)

com ( a n . 1 ,0) com[( n ] 1)

2 n -1

0 G 2 n ] = В n =0

2 n -1

1 G 2 n ] = В n =0

( t n ), ( t n ) J

( t n )1, ( t n )

ст = 0,

com S a n 1 ,0) com [ ( n ] 1)

com [ n ] ( a n 1 ,1)

com [ n ]

( a n 1 ,0)

. ( t n ) , ( t n ) J ,

( t n ) 1 , ( t n ) ,

G = 0,

G = 1,

and construct the direct sum of introduced matrices

G n ; 1] = . (G) G 2 n ] = G=0

(0)    [ n ]

2 n

(1)    [ n ]

2 n

( I 2 n 1 ® P 2 ) G 2 " n ]

2 n 1 -1

В 1

n 1 =0 L

com( a n 1 ,0)( t n ) com( a n 1 ,1)( t n )

2 n —1 -1

Список литературы Many-parameter m-complementary Golay sequences and transforms

  • Golay, M.J.E. Multi-slit spectrometry/M.J.E. Golay//Journal of the Optical Society of America. -1949. -Vol. 39, Issue 6. -P. 437-444. - DOI: 10.1364/JOSA.39.000437
  • Golay, M.J.E. Complementary series/M.J.E. Golay//IRE Transaction on Information Theory. -1961. -Vol. 7, Issue 2 -P. 82-87. - DOI: 10.1109/TIT.1961.1057620
  • Golay, M.J.E. Sieves for low autocorrelation binary sequences/M.J.E. Golay//IEEE Transactions on Information Theory. -1977. -Vol. 23, Issue 1. -P. 43-51. - DOI: 10.1109/TIT.1977.1055653
  • Shapiro, H.S. Extremal problems for polynomials and power series: ScM.Thesis/Shapiro Harold S. -Massachusetts, Massachusetts Institute of Technology, 1951. -77 p.
  • Shapiro, H.S. A power series with small partial sums/H.S. Shapiro//Notices of the American Mathematical Society. -1958. -Vol. (6)3. -P. 366-378.
  • Rudin, W. Some theorems on Fourier coefficients/W. Rudin//Proceedings of the American Mathematical Society. -1959. -Vol. 10, No 6. -P. 855-859. - DOI: 10.2307/2033608
  • Labunets, V.G. Multiparameter Golay 2-complementary sequences and transforms/V.G. Labunets, V.P. Chasovskikh, E. Ostheimer. In: Information Technologies and Nanotechnologies. -Samara: "Novaya Tehnika" Publisher, 2018. -P. 1013-1022.
  • Labunets, V.G. Multiparameter Golay m-complementary sequences and transforms/V.G. Labunets, V.P. Chasovskikh, E. Ostheimer. -In: Information Technologies and Nanotechnologies. -Samara: "Novaya Tehnika" Publisher, 2018. -P. 1005-1012.
  • Jacobi, C.G.J. Uber ein leichtes verfahren die in der theorie der sacularstorungen vorkommendern gleichungen numerische aufzulosen/C.G.J. Jacobi//Jurnal fur die reine und angewandte Mathematik. -1846. -Vol. 30. -P. 51-94.
  • Brent, R.P. The solution of singular-value and symmetric eigenvalue problems on multiprocessor Arrays/R.P. Brent, F.T. Luk//SIAM Journal on Scientific and Statistical Computing. -1985. -Vol. 6, Issue 1. -P. 69-83. - DOI: 10.1137/0906007
  • Lei, Z.X. Some properties of generalized Rudin-Shapiro polynomials/Z.X. Lei//Chinese Annals of Mathhematics. -1991. -Vol. 2. -P. 145-153.
Еще
Статья научная