Mapping coal fires using normalized difference coal fire index (NDCFI): case study at Khanh Hoa coal mine, Vietnam

Бесплатный доступ

Khanh Hoa coal mine (Thai Nguyen province) is one of the largest coal mines in the north of Vietnam. For many years, this area suffered from underground fires at coal mine waste dumps, seriously affecting production activities and the environment. This paper presents the results of classification of underground fire areas at Khanh Hoa coal mine using Normalized Diference Coal Fire Index (NDCFI). 03 Landsat 8 OLI_TIRS images taken on December 2, 2013, December 10, 2016, and December 3, 2019 were used to calculate NDCFI index, and then classify the underground fire areas by thresholding method. In the study, the land surface temperature was also calculated from Landsat 8 thermal infrared bands data, and then compared with the results of underground coal fire classification at Khanh Hoa coal mine. The obtained results showed that the NDCFI index can be used effectively in detecting and monitoring underground fire areas at coal mines. The use of the NDCFI index also has many advantages due to its calculation simplicity and rapidness compared to other methods for classifying underground coal fire areas.

Еще

Coal fire, khanh hoa coal mine, landsat data, ndcfi index, remote sensing

Короткий адрес: https://sciup.org/140290236

IDR: 140290236   |   DOI: 10.17073/2500-0632-2021-4-233-240

Список литературы Mapping coal fires using normalized difference coal fire index (NDCFI): case study at Khanh Hoa coal mine, Vietnam

  • Zhang Y., Wang A., Chen L., Liu C. Study of thermal characteristics and functional group changes of Yanghuopan Coal during spontaneous combustion. Journal of Thermal Analysis and Calorimetry. 2021. https://doi.org/10.1007/s10973-021-10802-6
  • Stracher G., Prakash A., Sokol E. Volume 3: Case Studies – Coal Fires. In: Stracher G. B., Prakash A., Sokol E. V. (eds.). Coal and Peat Fires: A Global Perspective. Elsevier Science; 2015. http://doi.org/10.1016/C2010-0-68844-4
  • Wolf K. H., Bruining J., Meeuwis R. Understanding underground coal fires for utilization. In: 68th EAGE Conference and Exhibition incorporating SPE EUROPEC 2006. 2006. https://doi.org/10.3997/2214-4609.201402110
  • Prakash A., Gupta R. P. Surface fires in Jharia coalfield, India – their distribution and estimation of area and temperature from TM data. International Journal of Remote Sensing. 1999;20(10):1935–1946. https://doi.org/10.1080/014311699212281
  • Mishra R. K., Roy P. N. S., Pandey J., Khalkho A., Singh V.K. Study of coal fire dynamics of Jharia coalfield using satellite data. International journal of Geomatics and Geosciences. 2014;4(3):477–484. URL: https://www.researchgate.net/publication/281833491_Study_of_coal_fire_dynamics_of_Jharia_coalfield_using_satellite_data
  • Chen Y., Li J., Yang B., Zhang S. Detection of coal fire location and change based on multi – temporal thermal remotely sensed data and field measurements. International Journal of Remote Sensing. 2007;28(15):3173–3179. https://doi.org/10.1080/01431160500444889
  • Cracknell A. P., Mansor S. B. Detection of sub-surface coal fires using Landsat Thematic Mapper data. International Archives of Photogrammetry and Remote Sensing. 1992;29:750–753. URL: https://www.isprs.org/proceedings/XXIX/congress/part7/750_XXIX-part7.pdf
  • Guha A., Kumar K. Structural controls on coal fire distributions – Remote sensing based investigation in the Raniganj coalfield, West Bengal. Journal of the Geological Society of India. 2012;79:467–475. https://doi.org/10.1007/s12594-012-0071-6
  • Huo H., Jiang X., Song X., Li Z., Ni Z., Gao C. Detection of coal fire dynamics and propagation direction from multi-temporal nighttime Landsat SWIR and TIR data: A case study on the Rujigou coalfield, Northwest (NW) China. Remote Sensing. 2014;6(2):1234–1259. https://doi.org/10.3390/rs6021234
  • Liu J., Wang Y., Yan S., Zhao F., Li Y., Dang L., Liu X., Shao Y., Peng B. Underground coal fire detection and monitoring based on Landsat-8 and Sentinel-1 data sets in Miquan fire area, XinJiang. Remote Sensing. 2021;13(6):1141. https://doi.org/10.3390/rs13061141
  • Trinh L. H., Zablotskii V. R. The application of Landsat multi-temporal thermal infrared data to identify coal fire in the Khanh Hoa coal mine, Thai Nguyen province, Vietnam. Izvestiya, Atmospheric and Oceanic Physics. 2017;53(9):1181–1187. https://doi.org/10.1134/S0001433817090183
  • Vu D. T., Nguyen T. T. Spatio-temporal changes of underground coal fires during 2008-2016 in Khanh Hoa coal field (North-east of Viet Nam) using Landsat time-series data. Journal of Mountain Science. 2018;15(12):2703–2720. https://doi.org/10.1007/s11629-018-4997-z
  • Prasun K., Kuntala L., Kanika S. Application of remote sensing to identify coal fires in the Raniganj Coalbelt, India. International Journal of Applied Earth Observation and Geoinformation. 2005;8(3):188–195. https://doi.org/10.1016/j.jag.2005.09.001
  • Trinh L. H., Vu V. T., Do T. T. Application of Landsat 8 and Sentinel 2 multi-spatial resolution satellite imageries to determine the land surface temperature in Khanh Hoa coal mine (Thai Nguyen province). Mining Industry Journal. 2018;(6):86–90.
  • Luu D. H., Nguyen T. H. L. Renewable energy policies for sustainable development in Vietnam. VNU Journal of Science: Earth and Environmental Sciences. 2009;25(3):133–142. URL: https://js.vnu.edu.vn/EES/article/view/1870
  • Nguyen T. T., Vu D. T. Use of hot spot analysis to detect underground coal fires from Landsat-8 TIRS data: A case study in the Khanh Hoa coal field, North-East of Vietnam. Environment and Natural Resources Journal. 2019;17(3):1–10. https://doi.org/10.32526/ennrj.17.3.2019.17
  • Raju A. Remote sensing based coal fire studies in Jharia coalfield, India. PhD thesis. Indian Institute of Technology Roorkee; 2015. 189 p.
  • Chavez P. Image-based atmospheric corrections–revisited and improved. Photogrammetric Engineering and Remote Sensing. 1996;62(9):1025–1036. URL: https://www.researchgate.net/publication/236769129_Image-Based_Atmospheric_Corrections_-_Revisited_and_Improved
  • Du C., Ren H., Qin Q., Meng J., Li J. Split-window algorithm for estimating land surface temperature from Landsat 8 TIRS data. In: IEEE Geoscience and Remote Sensing Symposium. 2014. Pp. 3578–3581. https://doi.org/10.1109/IGARSS.2014.6947256
  • Jiménez-Muñoz J. C, Sobrino J. A., Skoković D., Mattar C., Cristóbal J. LST retrieval methods from Landsat-8 thermal infrared sensor data. In: IEEE Geoscience and Remote Sensing Letters. 2014;11(10):1840–1843. https://doi.org/10.1109/LGRS.2014.2312032
  • Rongali G., Keshari A.K., Gosain A.K., Khosa R. Split-window algorithm for retrieval of land surface temperature using Landsat 8 thermal infrared data. Journal of Geovisualization and Spatial Analysis. 2018;2(2):1–19. https://doi.org/10.1007/s41651-018-0021-y
  • Huazhong R., Du C., Qin Q., Liu R. Atmospheric water vapor retrieval from Landsat 8 and its validation. In: IEEE International Geoscience and Remote Sensing Symposium. 2014. Pp. 3045–3048. https://doi.org/10.1109/IGARSS.2014.6947119
  • Sobrino J. A., Jimenez-Munoz J. C., Zarco-Tejada P. J., Sepulcre-Canto G., de Miguel E. Land surface temperature derived from airborne hyperspectral scanner thermal infrared data. Remote Sensing of Environment. 2006;102(1-2):99–115. https://doi.org/10.1016/j.rse.2006.02.001
Еще
Статья научная