Математические модели нелинейной вязкоупругости с операторами дробного интегро-дифференцирования

Бесплатный доступ

На основе метода структурного моделирования и гипотезы Больцмана-Вольтерры о наследственно упругом деформируемом твердом теле рассмотрены линейные и нелинейные дробные аналоги классических реологических моделей: Ньютона (так называемая модель Скотт Блэра), Фойхта, Максвелла, Кельвина и Зенера с использованием аппарата дробного интегро-дифференцирования Римана-Лиувилля. Выделены классы нелинейных математических моделей, для которых решение задачи ползучести удается получить в явном виде в терминах известных специальных функций. Разработана методика идентификации параметров предложенных математических моделей на основе экспериментальных данных по одноосному растяжению образцов при различных постоянных уровнях нагрузки. При наличии явных решений задачи ползучести параметры математических моделей определяются из решения задачи аппроксимации экспериментальных значений деформации методом наименьших квадратов с последующим уточнением методом координатного спуска. Для нелинейных математических моделей вязкоупругого деформирования, не позволяющих найти решение задачи ползучести в явном виде, разработана методика определения параметров модели на основе метода координатного спуска с обращением на каждом шаге к численному решению определяющего интегрального уравнения. Методика идентификации параметров моделей с операторами дробного интегро-дифференцирования реализована на примере ползучести поливинилхлоридного пластиката. Приводятся значения параметров для всех исследуемых моделей, выполнена проверка их адекватности экспериментальным данным, анализируются погрешности отклонения расчетных данных от опытных значений. В качестве примера выполнен сравнительный анализ относительной погрешности аппроксимации экспериментальных кривых ползучести и теоретических значений деформации в рамках линейного, нелинейного интегрируемого и нелинейного неинтегрируемого дробных аналогов модели Кельвина. Обсуждаются вопросы целесообразности использования моделей вязкоупругого деформирования с операторами дробного интегро-дифференцирования на основе сопоставления расчетов по рассмотренным моделям с данными расчетов по моделям вязкоупругости с целочисленными операторами интегро-дифференцирования.

Еще

Наследственно-упругое тело, нелинейность, структурные модели, операторы дробного интегро-дифференцирования, реологические модели, идентификация, интегральные уравнения, численные методы, экспериментальные данные

Короткий адрес: https://sciup.org/146281857

IDR: 146281857   |   DOI: 10.15593/perm.mech/2018.2.13

Список литературы Математические модели нелинейной вязкоупругости с операторами дробного интегро-дифференцирования

  • Огородников Е.Н., Радченко В.П., Унгарова Л.Г. Математическое моделирование наследственно-упругого деформируемого тела на основе структурных моделей и аппарата дробного интегро-дифференцирования Римана-Лиувилля // Вестн. Самар. гос. техн. ун-та. Сер. Физ.-мат. науки, - 2016. - № 1(20). - С. 167-194. DOI: 10.14498/vsgtu1456
  • Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional Differential Equations / North-Holland Mathematics Studies. Vol. 204. - Amsterdam: Elsevier, 2006. - 523 p.
  • Унгарова Л.Г. Применение линейных дробных аналогов реологических моделей в задаче аппроксимации экспериментальных данных по растяжению поливинилхлоридного пластиката // Вестн. Самар. гос. техн. ун-та. Сер. Физ.-мат. науки. - 2016. - № 4(20). - С. 691-706. DOI: 10.14498/vsgtu1523
  • Радченко В.П., Голудин Е.П. Феноменологическая стохастическая модель изотермической ползучести поливинилхлоридного пластиката // Вестн. Самар. гос. техн. ун-та. Сер. Физ.-мат. науки. - 2008. - № 1(16). - С. 45-52. DOI: 10.14498/vsgtu571
  • Огородников Е.Н., Унгарова Л.Г. Аналитические решения задачи о ползучести и идентификация параметров нелинейных математических моделей наследственно-упругого тела // Тр. Х Всерос. науч. конф. по механике деформируемого твердого тела. - Самара: Изд-во СамГТУ, 2017. - С. 120-123.
Еще
Статья научная