Mathematical model of induction motor with series-connected stator and rotor windings

Бесплатный доступ

To provide for the cost-effective use of resources and energy conservation it is vital to enhance unregulated electric drives of copious working mechanisms. The technical process of these mechanisms requires relatively longstanding speed reduction under low static loads. Moreover, another relevant issue is choosing control systems of electric drives in the mentioned systems in accordance with the economic and maintenance aspects. The authors suggest using the systems of impulse-vector control system with wound rotor induction motor that have one essential drawback - the shaft encoder installation. The replacement of the shaft encoder with sensorless impulse-vector control system is complicated due to the lack of proper mathematical description of the electromagnetic processes in schemes with non-traditional windings stator and rotor connection. To solve this problem the authors have developed a mathematical description of impulse-vector control system with wound rotor induction motor supposed to be multiphase and asymmetrical. Angular dependencies of inductances, flux linkages, voltages of engine windings, circuit current and electromagnetic torque relatively to rotor location are derived. In addition to that, the mathematical modeling and research of induction motor configuration with a series connected windings fed by AC voltage source are presented. Equating rotor position in impulse-vector control system with wound rotor induction motor is considered possible through angular dependencies of drop voltages on stator and rotor windings.

Еще

Industrial mechanisms, electric drive, asynchronous motor, phase rotor, impulse-vector control system, sensorless control, mathematical model

Короткий адрес: https://sciup.org/147158394

IDR: 147158394   |   DOI: 10.14529/power170111

Список литературы Mathematical model of induction motor with series-connected stator and rotor windings

  • Лезнов, Б.С. Энергосбережение и регулируемый привод в насосных и воздуходувных установках/Б.С. Лезнов. -М.: Энергопромиздат, 2006. -359 с.
  • Сарваров, А.С. Энергосберегающий электропривод на осное НПЧ-АД с программным формированием напряжения/А.С. Сарваров. -Магнитогорск: МГТУ, 2001. -206 с.
  • Барац, Е.И. Регулятор напряжения с переменной структурой для системы скалярного управления преобразователем частоты/Е.И. Барац, И.Я. Браславский//Электроприводы переменного тока: тр. XII науч.-техн. конф. -Екатеринбург: УГТУ, 2001. -С. 117-120.
  • A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system/Vishnu Kalaiselvan Arun Shankara, Subramaniam Umashankara, Shanmugam Paramasivamb, Norbert Hanigovszkic//Applied Energy. -2016. -No. 181. -P. 495-513.
  • Миронов, Л.М. Обоснование областей применения непосредственных преобразователей частоты/Л.М. Миронов; под ред. С.В. Хватова//Труды III Международной (XIV Всероссийской) конференции по автоматизированному электроприводу АЭП 2001 (Нижний Новгород, 12-14 сентября 2001). -Нижний Новгород: Вектор-ТиС, 2001. -С. 222.
  • Circuits of a pulse-vector controlling alternate current motor drive/A.V. Valov, T.A. Funk, A.M. Zhuravlev, N.Y. Sidorenko//Russian electrical engineering. -2014. -No. 85 (10). -P. 613-615 DOI: 10.3103/S1068371214100150
  • Indirect determination of the displacement in an electric motor drive/T.A. Funk, N.M. Saprunova, E.V. Belousov, A.M. Zhuravlev//Russian electrical engineering. -2015. -No. 86 (12). -P. 716-718 DOI: 10.3103/S106837121512007X
  • Holtz, J. Sensorless control of induction motor drives/J. Holtz//Proceedings of the IEEE. -2002. -No. 90 (8). -P. 1359-1394 DOI: 10.1109/JPROC.2002.800726
  • A control reconfiguration strategy for post-sensor FTC in induction motor-based EVs/B. Tabbache, N. Rizoug, M.E.H. Benbouzid, A. Kheloui//IEEE Transactions on Vehicular Technology. -2013. -No. 62 (3). -P. 965-971 DOI: 10.1109/TVT.2012.2232325
  • Pal, A. Sensorless speed control of induction motor driven electric vehicle using model reference adaptive controller/A. Pal, R. Kumar, S. Das//Energy Procedia. -2015. -No. 90. -P. 540-551 DOI: 10.1016/j.egypro.2016.11.222
  • Dominic, D.A. Analysis of field-oriented controlled induction motor drives under sensor faults and an overview of sensorless schemes/A. Dominic, T.R. Chelliah//ISA Transactions. -2015. -No. 53 (5). -P. 1680-1694 DOI: 10.1016/j.isatra.2014.04.008
  • Traoré, D. Adaptive interconnected observer-based backstepping control design for sensorless induction motor/D. Traoré, De J. Leon, A. Glumineau//Automatica. -No. 48 (4). -2012. -P. 682-687. 2012.01.018 DOI: 10.1016/j.automatica
  • Pulse-vector control with indirect determination of rotor angular position/Yu.S. Usynin, Yu.S. Smirnov, T.A. Kozina, A.V. Valov//Russian electrical engineering. -2013. -No. 84 (10). -P. 566-571 DOI: 10.3103/S1068371213100106
  • Usynin, Yu.S. Asynchronous electric drive with pulse-vector control/Yu.S. Usynin, A.V. Valov, T.A. Kozina//Russian electrical engineering. -2011. -Vol. 82 (3). -P. 134-137 DOI: 10.3103/S1068371211030102
  • Вольдек, А.И. Электрические машины/А.И. Вольдек. -Л.: Энергия, 1974. -840 c.
  • Важнов, А.И. Переходные процессы в машинах переменного тока/А.И. Важнов. -Л.: Энергия. Ленингр. отд-ние, 1986. -256 с.
  • Андреев, В.П. Основы электропривода/В.П. Андреев, Ю.А. Сабинин. -М.: Госэнергоиздат, 1963. -772 с.
  • Алексеев, Ю.В. Крановое электрооборудование: справ./Ю.В. Алексеев, А.П. Богословский, Е.М. Певзнер. -М.: Энергия, 1979. -240 с.
Еще
Статья научная