Mathematical model of thermophysical loading of a small-caliber artillery barrel with variant discretization of half-integer layers of the computational domain

Автор: Podkopaev I.A., Podkopaev A.V., Dolzhikov V.I.

Журнал: Siberian Aerospace Journal @vestnik-sibsau-en

Рубрика: Aviation and spacecraft engineering

Статья в выпуске: 4 vol.24, 2023 года.

Бесплатный доступ

In the conditions of continuous financing of the programs of the Ministry of defense of the Russian Federation, the question of finding the most effective ways to modernize weapons and military (special) equipment, the developments in which are maximum and the processes of their improvement can take no more than a few years, is particularly acute. Such products, in particular, include aviation artillery weapons (AAO), the prospects for the use of which remain for the entire period of the army's existence with conventional weapons. The main factor influencing the quality of the AAO functioning is considered to be the thermophysical loading of a small-caliber artillery barrel (hereinafter referred to as the barrel) during firing. The problem of increasing the accuracy of determining the temperature field of the barrel is again updated by tightening the conditions for striking targets. Issues closely related to the intensification of AAO application regimes have come to the fore. These are issues of heating, cooling, thermal strength, wear, barrel survivability, issues of safety and firing efficiency. Despite the methodological evidence of analytical and numerical approaches to formalizing heat transfer in the wellbore, their practical implementation is rather complicated. The physical and mathematical meaning of this reason is as follows: possible instability of solutions; manifestation of oscillations in areas of large gradients; simultaneous presence in the solution regions of supersonic, sonic and subsonic zones; the existence of laminar, turbulent flows and other non-linear formations; non-triviality of setting boundary conditions; the presence of thermal resistance of surfaces, etc. However, the practical needs of ensuring safety and increasing the efficiency of fire operation of AAO dictate the need to obtain a close approximation of the problem under consideration to its possibly existing exact analytical solution. The aim of the work is to improve the mathematical apparatus that simulates the temperature field of the shaft based on a combination of heat transfer methods and mathematical physics. By verifying the reliability of the developed mathematical model (hereinafter referred to as the model, if from the context of the presentation of the material it is clear that we are talking about the proposed tools), the facts of the absence of methodological errors in the formation of the constituent blocks of the model and the increase in the accuracy of determining the thermal loading of the wellbore by 9.4 % were established. Based on the accents of the stated problem, the directions for improving the model are argued.

Еще

Firing mode, thermal conductivity, differential equation, difference equation, approximation, reliability

Короткий адрес: https://sciup.org/148329714

IDR: 148329714   |   DOI: 10.31772/2712-8970-2023-24-4-717-736

Список литературы Mathematical model of thermophysical loading of a small-caliber artillery barrel with variant discretization of half-integer layers of the computational domain

  • Kompleksy aviatsionnogo vooruzheniya [Aircraft weapon systems]. Ed. by V. A. Konurkin. Moscow, AFIA named after professor N. E. Zhukovsky Publ., 2005, 947 p.
  • Sapozhnikov S. V., Kitanin L. V. Tekhnicheskaya termodinamika i teploperedacha [Technical thermodynamics and heat transfer]. St. Petersburg, SPbSTU Publ., 1999, 319 p.
  • Derevianko V. A., Makukha A. V. [Measuring the temperature distribution with a three-wire thermistor sensor system]. Sibirskiy zhurnal nauki i tekhnologiy. 2019, Vol. 20, No. 3, P. 334–343 (In Russ.).
  • Lobanov P. D., Usov E. V., Svetonosov A. I., Lezhnin S. I. [Analysis of experimental data on melting and movement of a metal melt over a cylindrical surface]. Teplofizika i aeromekhanika. 2020. No. 3, P. 483–490 (In Russ.).
  • Cruz C., Marshall A. Surface and gas measurements along a film cooled wall. Thermophysics and Heat Transfer, 2007. No. 21. P. 181–189.
  • Gusev S. A., Nikolaev V. N. [Parametric identification of the thermal state of electronic equipment in the aircraft instrument compartment]. Sibirskiy zhurnal nauki i tekhnologiy. 2019, Vol. 20, No. 1, P. 62–67 (In Russ.).
  • Vasiliev E. N. [Calculation of heat transfer characteristics of a ribbed wall]. Sibirskiy aerokosmicheskiy zhurnal. 2020, Vol. 21, No. 2, P. 226–232 (In Russ.).
  • Zuev A. A., Arngold A. A., Khodenkova E. V. [Heat transfer in the field of centrifugal forces for elements of gas turbines]. Sibirskiy aerokosmicheskiy zhurnal. 2020, Vol. 21, No. 3, P. 364–376 (In Russ.).
  • Zakharenkov V. F., Agoshkov O. G., Devyatkin V. A., Yurchenko N. A. [Study of the thermal erosion resistance of barrel by the method of planning an experiment]. Мaterialy III Vseros. nauch.- tekhn. konf. “Fundamental'nyye osnovy ballisticheskogo proyektirovaniya” [Materials III All-Russ. Scient. and Technic. Conf. “Fundamentals of ballistic design”]. St. Petersburg, 2012, P. 79–86 (In Russ.).
  • Ashurkov A. A., Lazovik I. N., Nikitenko Yu. V. [Study of the process of wear of barrels of pulsed heat engines of aviation weapons systems]. Мaterialy XIII Vseros. nauch.-tekhn. konf. “Problemy povysheniya boyevoy gotovnosti, boyevogo primeneniya, tekhnicheskoy ekspluatatsii i obespecheniya bezopasnosti poletov letatel'nykh apparatov s uchetom klimaticheskikh usloviy Sibiri, Zabaykal'ya i Dal'nego Vostoka” [Materials XIII All-Russ. Scient. and Technic. Conf. “Problems of increasing combat readiness, combat use, technical operation and ensuring flight safety of aircraft, taking into account the climatic conditions of Siberia, Transbaikalia and the Far East”]. Irkutsk, 2003, P. 97–100 (In Russ.).
  • Podkopaev A. V., Krainov N. F., Lazovik I. N., Morozov S. A. [Experimental studies of limiting thermal loads on the barrel of a rapid-firing gun]. Мaterialy XIII Vseros. nauch.-tekhn. konf. “Problemy povysheniya boyevoy gotovnosti, boyevogo primeneniya, tekhnicheskoy ekspluatatsii i obespecheniya bezopasnosti poletov letatel'nykh apparatov s uchetom klimaticheskikh usloviy Sibiri, Zabaykal'ya i Dal'nego Vostoka” [Materials XIII All-Russ. Scient. and Technic. Conf. “Problems of increasing combat readiness, combat use, technical operation and ensuring flight safety of aircraft, taking into account the climatic conditions of Siberia, Transbaikalia and the Far East”]. Irkutsk, 2003, P. 127–129 (In Russ.).
  • Danilenko R. A., Podkopaev A. V. [Synthesis of a mathematical model for the functioning of the “weapon-cartridge” system based on the solution of a quasi-linear non-stationary heat conduction equation]. Мaterialy V Vseros. nauch.-prakt. konf. “Akademicheskiye Zhukovskiye chteniya” [Materials V All-Russ. Scient. and Practic. Conf. “Academic Zhukovsky reading”]. Voronezh, 2018, P. 67–73 (In Russ.).
  • Podkopaev A. V. [Modus for determining the heat transfer coefficient for calculating the temperature field of the barrel of a rapid-firing artillery gun]. Мaterialy Vseros. nauch.-prakt. konf. “Sovremennoye sostoyaniye i perspektivy razvitiya letatel'nykh apparatov, ikh silovykh ustanovok i kompleksov aviatsionnogo vooruzheniya” [Materials All-Russ. Scient. and Practic. Conf. “The current state and prospects for the development of aircraft, their power plants and aviation weapons systems”]. Voronezh, 2012, P. 202–204 (In Russ.).
  • Isachenko V. P., Osipova V. A., Sukomel A. S. Teploperedacha [Heat transfer]. Moscow, Energoizdat Publ., 1981, 416 p.
  • Korn G., Korn T. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov [Mathematical handbook for scientists and engineers]. Moscow, Nauka Publ., 1984, 832 p.
  • Spravochnik po aviatsionnym materialam i tekhnologii ikh primeneniya [Handbook of aviation materials and technologies for their application]. Ed. by V. G. Alexandrov. Moscow, Transport Publ., 1979, 242 p.
  • Podkopaev A. V., Babadzhanov A. B., Podkopaev I. A., Dolzhikov V. I. [Identification and simulation mathematical model of thermo and physical loading of a small-caliber artillery barrel]. Sibirskiy aerokosmicheskiy zhurnal. 2022, Vol. 23, No. 2, P. 209–226 (In Russ.).
  • Babadzhanov A. B., Podkopaev I. A., Podkopaev A. V., Dolzhikov V. I. [Combined mathematical model of internal and intermediate ballistics of aviation artillery weapons]. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskiye nauki. 2022, Rel. 4, P. 177–185 (In Russ.).
  • Vlasova E. A., Zarubin V. S., Kuvyrkin G. N. Priblizhennyye metody matematicheskoy fiziki [Approximate methods of mathematical physics]. Moscow, MSTU named after N. E. Bauman Publ., 2001, 700 p.
  • Dulnev G. N., Parfenov V. G., Sigalov A. V. Primeneniye elektronnykh vychislitel'nykh mashin dlya resheniya zadach teploobmena [The use of electronic computers for solving heat transfer problems]. Moscow, Vysshaya shkola Publ., 1990, 207 p.
  • Zarubin V. S., Stankevich I. V. Raschet teplonapryazhennykh konstruktsiy [Calculation of heatstressed structures]. Moscow, Mashinostroyeniye Publ., 2005, 352 p.
  • Samarsky A. A., Nikolaev E. S. Metody resheniya setochnykh uravneniy [Methods for solving grid equations]. Moscow, Nauka Publ., 1978, 592 p.
  • Zaitsev A. S. Proyektirovaniye artilleriyskikh stvolov. Ch. II. Spetsial'nyye voprosy [Designing artillery barrels. P. II. Special questions]. Moscow, MC of the USSR on public education Publ., 1988, 114 p.
  • Podkopaev I. A., Podkopaev A. V. Raschet temperaturnogo polya stvola avtomaticheskoy pushki vo vremya strel'by [Calculation of the temperature field of the barrel of an automatic gun during firing]. Moscow, Rospatent, 2023, No. gosudarstvennoj registracii programmy dlya EVM [state registration of a computer program] RU 2023617444. (In Russ.).
Еще
Статья научная