Maxwell equations in Lobachevsky space and modeling the medium with reflecting properties

Автор: Kuzmich A., Buryy A., Ovsiyuk E.

Журнал: Известия Коми научного центра УрО РАН @izvestia-komisc

Рубрика: Научные статьи

Статья в выпуске: 5 (71), 2024 года.

Бесплатный доступ

Lobachevsky geometry simulates a medium with special constitutive relations Di = ϵ0ϵikEk, Bi = μ0μikHk, where two matrices coincide: ϵik(x) = μik(x). The situation is specified in quasi-Cartesian coordinates (x, y, z) in Lobachevsky space, they are appropriate for modeling a medium nonuniform along the axis z. Exact solutions of the Maxwell equations in complex form of Majorana-Oppenheimer have been constructed. The problem reduces to a second-order differential equation for a certain primary function which can be associated with the one-dimensional Schrödinger problem for a particle in external potential field U(z) = U0e2z. In the frames of the quantum mechanics, Lobachevsky geometry acts as an effective potential barrier with reflection coefficient R = 1; in electrodynamic context, this geometry simulates a medium that effectively acts as an ideal mirror distributed in space. Penetration of the electromagnetic field into the effective medium along the axis z depends on the parameters of an electromagnetic waves ω, k2 1 + k2 2 and the curvature radius ρ of the used Lobachevsky model. The generalized quasi-plane wave solutions f(t, x, y, z) = E + iB and the relevant system of equations are transformed into the real form, which permit us to relate geometry characteristics with expressions for effective tensors of electric and magnetic permittivities.

Еще

Maxwell equations, majorana-oppenheimer formalism, lobachevsky geometry, exact solutions, effective constitutive relations

Короткий адрес: https://sciup.org/149146266

IDR: 149146266   |   DOI: 10.19110/1994-5655-2024-5-58-63

Список литературы Maxwell equations in Lobachevsky space and modeling the medium with reflecting properties

  • Gordon, W. Zur Lichtfortpflanzung nach der Relativitätstheorie / W. Gordon // Annalen der Physik. – 1923. – Vol. 72. – P. 421–456.
  • Tamm, I. E. Electrodynamics of an anisotropic medium and the special theory of relativity / I. E. Tamm // Zh. R. F.-Kh. O., Fiz. dep. – 1924. – Vol. 56, № 2–3. – P. 248–262.
  • Tamm, I. E. Crystal optics in the theory of relativity and its relationship to the geometry of a biquadratic form / I. E. Tamm // Zh. R. F.-Kh. O., Fiz. dep. – 1925. – Vol. 57, № 3-4. – P. 209–240.
  • Mandelstam, L. I. Elektrodynamik der anisotropen Medien und der speziallen Relativitätstheorie / L. I. Mandelstam, I. E. Tamm // Mathematische Annalen. – 1925. – Vol. 95. – P. 154–160.
  • Majorana, E. Scientific Papers. (Unpublished). Deposited at the «Domus Galileana» / E. Majorana. – Pisa, quaderno 2. – P. 101/1; 3, P. 11, 160; 15, P. 16; 17, P. 83, 159.
  • Oppenheimer, J. Note on light quanta and the electromagnetic field / J. Oppenheimer // Physical Review. – 1931. – Vol. 38. – P. 725–746.
  • Silberstein, L. Elektromagnetische Grundgleichungen in bivectorieller Behandlung / L. Silberstein // Annalen der Physik. – 1907. – Vol 22, № 3. – P. 579–586.
  • Silberstein, L. Nachtrag zur Abhandlung über elektromagnetische Grundgleichungen in bivektorieller Behandlung / L. Silberstein // Annalen der Physik. – 1907. – Vol. 24, № 14. – P. 783–784.
  • Weber, H. Die partiellen Differential-Gleichungen der mathematischen Physik nach Riemann’s Vorlesungen / H. Weber. – Braunschweig, 1901.
  • Bialynicki-Birula, I. On the wave function of the photon / I. Bialynicki-Birula // Acta Phys. Polon. – 1994. – Vol. 86. – P. 97–116.
  • Bialynicki-Birula, I. Photon wave function / I. Bialynicki- Birula // Progress in Optics. – 1996. – Vol. 36. – P. 248–294.
  • Red’kov, V. M. Polay chastis v rimanovskom prostranstve i gruppa Lorensa [Fields in Riemannian space and the Lorentz group] / V. M. Red’kov. – Minsk: Belarusskaya nauka [Minsk: Belarussian Science], 2009. – 486 p.
  • Ovsiyuk, E. M. Elektrodinamika Maksvella v prostranstve s neyevklidovoy geometriyey [Maxwell’s electrodynamics in space with non-Euclidean geometry] / Е. М. Ovsiyuk. – Mozyr: OU MSPU im. I. P. Shamyakina, 2011. – 228 p.
Еще
Статья научная