Mechanism of Phytohormone Responses Against Salt Stress: a Review

Автор: Payel Nath, Sisir Ghosh

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 4 т.16, 2021 года.

Бесплатный доступ

Abiotic stress is defined as the negative impact of non-living factors on living organisms in a specific environment. An unfavourable environmental condition comprising extreme low and high temperature, salinity, drought, water logging, heavy metals etc. pose a complex set of stress condition. Plant responses to those environmental stresses are also complex. The effects of stress are usually measured in terms of plant survival, crop yield, growth (biomass) or primary assimilatory processes which are related to overall growth of plants. Various physiological stimuli and/or stresses control the synthesis of phytohormones in many ways. Again all the molecular biological phenomenon including growth and development of the plants are controlled by the phytohormones at very low concentration. During abiotic stress the biosynthesis and accumulation of different molecules thought to have protective functions in the cells. Some plant growth promoting rhizobacteria (PGPR) may exert a direct stimulation on plant growth and development by providing plants with some of the phytohormones. Among the all abiotic stresses salinity limits the crop’s growth and productivity worldwide. Salinity affects many of the physiological processes starting from seed germination, enzymatic activity, food production to DNA and protein synthesis. Many of the researchers work on the effect of salinity on the physiological activity of the plants, but the mechanism of phytohormones response against salinity are still not assembled in a systematic manner. An attempt is made to establish the comprehensive mechanism of phytohormones responses against salt stress and to know about the adaptation/tolerance of plants in the molecular level as well as systematic approaches during this post genomic era with 164 references.

Еще

Abiotic stress, salinity, phytohormones, physiological activity, molecular mechanism

Короткий адрес: https://sciup.org/143178318

IDR: 143178318

Список литературы Mechanism of Phytohormone Responses Against Salt Stress: a Review

  • Abdel Latef A A H, Abu Alhmad M F, Kordrostami M, Abo-Baker A-B A-E, Zakir A. (2020). Inoculation with Azospirillum Lipoferumor Azotobacter Chroococcum Reinforces Maize Growth by Improving Physiological Activities Under Saline Conditions. J. Plant Growth Regul., 39, 1293-1306.
  • Abdel Latef A A H, Akter A, Tahjib-Ul-Arif M. (2021). Foliar Application of Auxin or Cytokinin Can Confer Salinity Stress Tolerance in Vicia faba L.. Agronomy, 11, 790. https://doi.org/10.3390/ agronomy11040790.
  • Abdullah Z, Ahmad R. (1990). Effect of pre- and post-kinetin treatments on salt tolerance of different potato cultivars growing on saline soils. J. Agron. Crop Sci., 165, 94-102.
  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 15, 63-78.
  • Abido W A E, Allem A, Zsombik L, Attila N. (2019). Effect of gibberellic acid on germination of six wheat cultivars under salinity stress levels. Asian J. Biol. Sci, 12, 51-60. doi:10.3923/ajbs.2019.51.60.
  • Abouelsaad I and Renault S. (2018). Enhanced oxidative stress in the jasmonic acid-deficient tomato mutant def-1 exposed to NaCl stress. J. Plant Physiol., 226, 136-144.
  • Achard P, Cheng H, Grauwe L D, Decat J, Schoutteten H, Moritz T, Straeten D V D, Peng J, Harberd N P. (2006). Integration of plant responses to environmentally activated phytohormonal signals. Science, 311(5757), 91-94. Doi: 10.1126/science.1118642.
  • Ahmad P, Ahanger M A, Alyemeni M N, Wijaya L, Alam P, Ashraf M. (2018). Mitigation of sodium chloride toxicity in Solanum lycopersicum L. by supplementation of jasmonic acid and nitric oxide. J. Plant Interac., 13, 64-72.
  • Ahmad R, Hussain S, Anjum M A, Khalid M F, Saqib M, Zakir I, Hassan A, Fahad S, Ahmad S. (2019). Oxidative Stress and Antioxidant Defense Mechanisms in Plants Under Salt Stress. In Plant Abiotic Stress Tolerance; Hasanuzzaman M, Hakeem K R, Nahar K, Alharby H F, Eds. Springer International Publishing. Cham, Switzerland, pp. 191-205, ISBN 978-3-030-06117-3.
  • Al Taey D K A. (2017). Alleviation of salinity effects by poultry manure and gibberellin application on growth and peroxidase activity in pepper. Int. J. Environ. Agric. Biotechnol., 2, 1851-1862. doi:10.22161/ijeab/2.4.49.
  • Alam M, Khan M A, Imtiaz M, Khan M A, Naeem M, Shah S A Samiullah, Ahmad S H, Khan L. (2020). Indole-3-Acetic Acid Rescues Plant Growth and Yield of Salinity Stressed Tomato (Lycopersicon esculentum L.). GesundePflanz., 72, 87-95.
  • Ali Q, Athar H R, Ashraf M. (2006). Influence of exogenously applied brassinosteroids on the mineral nutrient status of two wheat cultivars grown under saline conditions. Pak. J. Bot., 38, 16211632.
  • Ali Q, Athar H R, Ashraf M. (2008). Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide. Plant Growth Regul., 56, 107-116.
  • Aloni R, Schwalm K, Langhans M, Ullrich C I. (2003). Gradual shifts in sites of free- auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta, 216, 841-53.
  • Amzallag G N, Lerner H R, Poljakoff-Mayber A. (1990). Exogenous ABA as a modulator of response of sorghum to high salinity. J. Exp. Bot., 41, 13891394.
  • Anuradha S, Rao S S R. (2001). Effect of Brassinosteroids on Salinity Stress Induced Inhibition of Seed Germination and Seedling Growth of Rice (Oryza Sativa L.). Plant Growth Regul., 33, 151-153.
  • Aremu A O, Masondo N A, Sunmonu T O, Kulkarni M G, Zatloukal M, Spichal L, Dolezal K, Staden J V. (2014). A novel inhibitor of cytokinin degradation (INCYDE) influences the biochemical parameters and photosynthetic apparatus in NaCl-stressed tomato plants. Planta, 240, 877-889.
  • Aroca R, Ruiz-Lozano J M, Zamarreno A M, Paz J A, Garcia-Mina J m, Pozo M J, Lopez-Raez J A. (2013). Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J. Plant Physiol, 170, 47-55. doi: 10.1016/j.jplph.2012.08.020.
  • Ashraf M, Foolad M R A. (2005). Pre-sowing seed treatment: A shotgun approach to improve germination, plant growth and crop yield under saline and non-saline conditions. Advances in Agronomy, 88.
  • Ashraf M. (2010). Inducing drought tolerance in plants: Recent advances. Biotechnology Advances, 28, 169-183.
  • Bahieldin A, Atef A, Edris S, Gadalla N O, Ali H M, Hassan S M, Al-Kordy M A, Ramadan A M, Makki R M, Al-Hajar A S. (2016). Ethylene responsive transcription factor ERF109 retards PCD and improves salinity tolerance in plant. BMC Plant Biol., 16, 216. doi: 10.1186/s12870-016-0908-z.
  • Bajguz A, Hayat S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Bioch., 47, 1-8.
  • Bao S, Hua C, Shen L, Yu H. (2020). New insights into gibberellin signaling in regulating flowering in Arabidopsis. J. Integr. Plant Biol., 62(1), 118-131.
  • Barciszewski J, Siboska G, Rattan S I S, Clark B F C. (2000). Occurrence, biosynthesis and properties of kinetin (N6- furfuryladenine). Plant Growth Regul., 32, 257-265.
  • Bavei V, Shiran B, Khodambashi M, Ranjbar A. (2011). Protein Electrophoretic Profiles and Physiochemical Indicators of Salinity Tolerance in Sorghum (Sorghum bicolor L.). Afr. J. Biotechnol., 10, 26832697.
  • Bhardwaj R, Sharma I, Kanwar M, Sharma R, Handa N, Kaur H, Kapoor D. (2013). LEA proteins in salt stress tolerance. In: Ahmad P et al., editors. Salt Stress in Plants. Springer New York, p. 79-112. DOI: 10.1007/978-1-4614-6108-1.
  • Bielach A, Hrtyan M, Tognetti V B. (2017). Plants under Stress: Involvement of Auxin and Cytokinin. Int. J. Mol. Sci., 18, 1427.
  • Cao W H, Liu J, He X J, Mu R L, Zhou H L, Chen S Y. (2007). Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol., 143, 707-719. Doi: 10.1104/pp.106.094292.
  • Cao Y R, Chen S Y, Zhang J S. (2008). Ethylene signalling regulates salinity stress response: An overview. Plant Signal. Behav., 3, 761-763. doi: 10.4161/psb.3.10.5934.
  • Cheong J J, Choi Y D. (2003). Methyl jasmonate as a vital substance in plants. TRENDS in Genetics, 19, 409-413.
  • Dash M, Panda S K. (2001). Salt Stress Induced Changes in Growth and Enzyme Activities in Germinating Phaseolus mungo Seeds. Biol. Plant., 44, 587-589.
  • Davies P J. (2004). Plant hormones: biosynthesis, signal transduction, action. Kluwer Academic Press, the Netherlands.
  • Divi U K, Rahman T, Krishna P. (2010). Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol., 10, 151.
  • Du H, Wu N, Fu J, Wang S, Li X, Xiao J, Xiong L. (2012). A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. Journal of Experimental Botany, 63, 6467-80.
  • Duan F, Ding J, Lee D, Lu X, Feng Y, Song W. (2017). Overexpression of SoCYP85A1, a spinach cytochrome p450 gene in transgenic tobacco enhances root development and drought stress tolerance. Front. Plant Sci., 8, 1909. Doi: 10.3389/fpls.2017.01909.
  • Duan L, Dietrich D, Ng C H, Chan P M, Bhalerao R, Bennett M J, Dinneny J R. (2013). Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell, 25, 324-341. DOI: 10.1105/tpc.112.107227.
  • Durigan D R J, Sodek L, Pinheiro H P, Haddad C R B. (2011). The effect of 24-epibrassinolide and clotrimazole on the adaptation of Cajanus cajan (L.) Millsp. to salinity. Acta Physiol. Plant, 33, 18871896.
  • El-Shaieny A H. (2015). Seed germination percentage and early seedling establishment of five (Vigna unguiculata L. (Walp) genotypes under salt stress. Europ. J. Exp. Biol., 5, pp. 22-32.
  • El-Tayeb M A. (2005). Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul, 45, 215-224.
  • Fahad S, Hussain S, Matloob A. (2015). Phytohormones and plant responses to salinity stress: a review. Plant Growth Regulation, 75, 391-404.
  • Farhangi-Abriz S, and Ghassemi-Golezani K. (2018). How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants? Ecotoxicol. Environ. Saf., 147, 1010-1016.
  • Feng Y, Liu J, Zhai L, Gan Z, Zhang G, Yang S, Wang Y, Wu T, Zhang X, Xu X.(2019). Natural variation in cytokinin maintenance improves salt tolerance in apple rootstocks. Plant Cell Environ., 42, 424-436.
  • Freitas V S, de Souza Miranda R, Costa J H, de Oliveira D F, de Oliveira Paula S, de Castro Miguel E, Freire R S, Prisco J T, Gomes-Filho E. (2018). Ethylene triggers salinity tolerance in maize genotypes by modulating polyamine catabolism enzymes associated with H2O2 production. Environ. Exp. Bot., 145, 7586. doi:10.1016/j.envexpbot.2017.10.022.
  • Fricke W, Akhiyarova G, Veselov D, Kudoyarova G. (2004). Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves. J. Exp. Bot., 55, 1115-1123.
  • Garcia-Abellan J O, Fernandex-Garcia N, Lopez-Berenguer C, Egea I, Flore F B, Angosto T, Carpel J, Lozano R, Pineda B, Noreno V, Olmos E, Bolarin M C. (2015). The tomato res mutant which accumulates JA in roots in non-stressed conditions restores cell structure alterations under salinity. Physiol. Plant., 155, 296-314.
  • Geng Y, Wu R, Choon W W, Xie F, Wei X, Chan Y M P, Tham C, Duan L, Dinneny J R. (2013). A spatiotemporal understanding of growth regulation during the salt stress response in Arabidopsis. Plant Cell, 25, 2132-2154.
  • Gharbi E, Martinez J P, Benahmed H, Lepoint G, Vanpee B, Quinet M, Lutts S. (2017). Inhibition of ethylene synthesis reduces salinity-tolerance in tomato wild relative species Solanum chilense. J. Plant Physiol., 210, 24-37. doi: 10.1016/j.jplph.2016.12.001.
  • Ghodrat V, Rousta M J. (2012). Effect of priming with gibberellic acid (GA3) on germination and growth of corn (Zea mays L.) under saline conditions. Int. J. Agric. Crop. Sci., 4, 883-885.
  • Gomez C A, Arbona V, Jacas J, PrimoMillo E, Talon M. (2002). Abscisic acid reduces leaf abscission and increases salt tolerance in citrus plants. J. Plant Growth Regul., 21, 234- 240.
  • Gomez-Roldan M V, Fermas S, Brewer P B, Puech-Pages V, Dun E A, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C, Bouwmeester H, Becard G, Beveridge C A, Rameau C, Rochange S F. (2008). Strigolactone inhibition of shoot branching. Nature, 455 (7210), 189-194. doi: 10.1038/nature07271.
  • Gregory P J, Ismail S, Razaq I B, Wahbi A. (2018). Soil Salinity: Current Status and in Depth Analyses for Sustainable Use; Chapter 2; International Atomic Energy Agency: Vienna, Austria, pp. 4-11.
  • Guilfoyle T J, Hagen G, Li Y, Ulmasov T, Liu Z, Strabala T, Gee M A. (1993). Auxin-regulated transcription. Aust. J. Plant Physiol., 20, 489-502.
  • Gunes A, Inal A, Alpaslam M, Erslan F, Bagsi E G, Cicek N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maiz (Zea mays L.) grown under salinity. J. Plant Physiol., 164, 728-736.
  • Guo J, Li Y, Han G, Song J, Wang B. (2018). NaCl markedly improved the reproductive capacity of the euhalophyte Suaeda salsa. Funct. Plant Biol., 45, 350-361.
  • Gurmani A R, Bano A, Ullah N, Khan H, Jahangir M, Flowers T J. (2013). Exogenous abscisic acid (ABA) and silicon (Si) promote salinity tolerance by reducing sodium (Na+) transport and bypass flow in rice (Oryza sativa indica). Aust. J. Crop. Sci., 7, 1219-1226.
  • Gurmani A, Bano A, Khan S, Din J, Zhang J. (2011). Alleviation of salt stress by seed treatment with abscisic acid (ABA), 6-benzylaminopurine (BA) and chlormequat chloride (CCC) optimizes ion and organic matter accumulation and increases yield of rice (Oryza sativa' L.). Aust. J. Crop. Sci., 5, 1278-1285.
  • Ha C V, Leyva-Gonzalez M A, Osakabe Y, Tran U T, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong N V, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Tran L-S P. (2013). Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc. Natl. Acad. Sci. U. S. A. 111, 851-856. 10.1073/pnas.1322135111.
  • Hagen G, Guilfoyle T. (2002). Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol. Biol., 49, 373-385.
  • Han N, Lan W, He X, Shao Q. (2011). Expression of a Suaeda salsa vacuolar H+/Ca2+ transporter gene in Arabidopsis contributes to physiological changes in salinity. Plant Mol. Biol. Report, 30, 470-477.
  • Hayat Q, Hayat S, Irfan M, Ahmad A. (2010). Effect of exogenous salicylic acid under changing environment: A review. Environ. Exp. Bot., 68, 1425.
  • Hazman M, Hause B, Eich E, Nick P, Riemann M. (2015). Increased tolerance to salt stress in OPDA-deficient rice ALLENE OXIDE CYCLASE mutants is linked to an increased ROS-scavenging activity. J. Exp. Bot., 66, 3339-3352.
  • Horvath E, Szalai G, Janda T. (2007). Induction of Abiotic Stress Tolerance by Salicylic Acid Signaling. J. Plant Growth Regul., 26, 290-300.
  • Hundertmark M, Hincha D K. (2008). LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics, 9, 118. DOI: 10.1186/1471-2164-9-118.
  • Husen A, Iqbal M, Aref I M. (2016). IAA-induced alteration in growth and photosinthesis of pea (Pisum sativum L.) plants grown under salt stress. Journal of Environmental Biology, 37, 421-429.
  • Iqbal M, Ashraf M, Jamil A, Rehman S. (2006b). Does seed priming induce changes in the levels of some endogenous plant hormones in hexaploid wheat plants under salt stress? J. Integ. Plant Biol., 48, 81-189.
  • Iqbal M, Ashraf M, Jamil A. (2006a). Seed enhancement with cytokinins: changes in growth and grain yield in salt stressed wheat plants. Plant Growth Regul., 50, 29-39.
  • Iqbal N, Umar S, Khan N A, Khan M I R. (2014). A New Perspective of Phytohormones in Salinity Tolerance: Regulation of Proline Metabolism. Environ. Exp. Bot., 100, 34-42.
  • Javid M G, Sorooshzadeh A, Sanavy S A M M, Allahdadi I, Moradi F. (2011). Effects of the Exogenous Application of Auxin and Cytokinin on Carbohydrate Accumulation in Grains of Rice under Salt Stress. Plant Growth Regul., 65, 305-313.
  • Jayakannan M, Bose J, Babourina O, Shabala S, Massart A, Poschenrieder C, Rengel Z. (2015). The NPR1-dependent salicylic acid signalling pathway is pivotal for enhanced salt and oxidative stress tolerance in Arabidopsis. J. Exp. Bot., 66 (7), 18651875. doi: 10.1093/jxb/eru528.
  • Jayasinghe T, Perera P, Wimalasekera R. (2019). Effect of foliar application of gibberellin in mitigating salt stress in tomato (Solanum lycopersicum), Thilina' variety. In Proceedings of the 6th International Conference on Multidisciplinary Approaches (iCMA), Faculty of Graduate Studies, University of Sri Jayewardenepura, Nugegoda, Sri Lanka, 2627. Available online: https://ssrn.com/abstract=3497340.
  • Jeschke W D, Peuke A D, Pate J S, Hartung W. (1997). Transport, synthesis and catabolism of abscisic acid (ABA) in intact plants of castor bean (Ricinus communis L.) under phosphate deficiency and moderate salinity. J. Exp. Bot., 48, 1737-1747.
  • Jia F, Qi S, Li H, Liu P, Li P, Wu C, Zheng C, Huang J. (2014). Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance. Biochem. Biophys. Res. Commun., 454, 505-511. DOI: 10.1016/j.bbrc.2014.10.136.
  • Jiang C, Belfield E J, Cao Y, Smith J A, Harberd N P. (2013). An Arabidopsis soil-salinity-tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. Plant Cell, 25, 3535-3552. doi: 10.1105/tpc.113.115659.
  • Kang D J, Seo Y J, Lee J D, Ishii R, Kim K U, Shin D H, Park S K, Jang S W, Lee I J. (2005). Jasmonic Acid Differentially Affects Growth, Ion Uptake and Abscisic Acid Concentration in Salt-tolerant and Salt-sensitive Rice Cultivars. J. Agron. Crop Sci., 191, 273-282.
  • Karlidag H, Yildirim E, Turan M. (2011). Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragaria x ananassa). Sci Hortic., 130, 133-140.
  • Kaya C, Kirnak H, Higgs D, Saltali K. (2002). Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high salinity. Sci. Hortic. 93, 65-74.
  • Kaya C, Tuna A L, Okant A M. (2010). Effect of foliar applied kinetin and indole acetic acid on maize. Turk Journal of Agric For, 34, 529-538.
  • Keshishian E A, Hallmark H T, Ramaraj T, Plackova L, Sundararajan A, Schilkey F D, Novak O, Rashotte A M. (2018). Salt and oxidative stresses uniquely regulate tomato cytokinin levels and transcriptomic response. Plant Direct, 2, e00071.
  • Keskin B C, Sarikaya A T, Yuksel B, Memon A R. (2010). Abscisic acid regulated gene expression in bread wheat. Aust. J. Crop Sci., 4, 617-625.
  • Khalid A, Aftab F. (2020). Effect of Exogenous Application of IAA and GA 3 on Growth, Protein Content, and Antioxidant Enzymes of Solanum tuberosum L. Grown in Vitro under Salt Stress. Vitro Cell. Dev. Biol. Plant, 56, 377-389.
  • Khan A, Khan A L, Muneer S, Kim Y.-H, Al-Rawahi A, Al-Harrasi A. (2019). Silicon and Salinity: Crosstalk in Crop-Mediated Stress Tolerance Mechanisms. Front. Plant Sci., 10, 1429.
  • Khan N, Bano A, Ali S, Babar M A. (2020). Crosstalk amongst Phytohormones from Planta and PGPR under Biotic and Abiotic Stresses. Plant Growth Regul, 90, 189-203.
  • Khan W U D, Aziz T, Maqsood M A, Farooq M, Abdullah Y, Ramzani P M A, Bilal H M. (2018). Silicon Nutrition Mitigates Salinity Stress in Maize by Modulating Ion Accumulation, Photosynthesis, and Antioxidants. Photosynthetica, 56, 1047-1057.
  • Kim J I. (2013). Overexpression of Arabidopsis YUCCA6 in potato results in high-auxin developmental phenotypes and enhanced resistance to water deficit. Mol. Plant., 6, 337-349.
  • Krishna P. (2003). Brassinosteroid-Mediated Stress Responses. J. Plant Growth Regul., 22, 289-297.
  • Kurotani K, Hayashi K, Hatanaka S, Toda Y, Ogawa D, Ichikawa H, Ishimaru Y, Tashita R, Suzuki T, Ueda M, Hattori T, Takeda S. (2015). Elevated levels of CYP94 family gene expression alleviate the jasmonate response and enhance salt tolerance in rice. Plant Cell Physiol., 56, 779-789.
  • Lee S, Kim S-G, Park C-M. (2010). Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytol, 188, 626-637.
  • Lehmann J, Atzorn R, Bruckner C, Reinbothe S, Leopold J, Wasternack C, Parthier B. (1995). Accumulation of jasmonate, abscisic acid, specific transcripts and proteins in osmotically stressed barley leaf segments. Planta, 197, 156- 162.
  • Li K, Pang, C H, Ding F, Sui N, Feng Z T, Wang B S. (2012). Overexpression of Suaeda salsa stroma ascorbate peroxidase in Arabidopsis chloroplasts enhances salt tolerance of plants. South Afr. J. Bot., 78, 235-245.
  • Li X J, Yang M F, Chen H, Qu L Q, Chen F, Shen S H. (2010). Abscisic acid pretreatment enhances salt tolerance of rice seedlings: Proteomic evidence. Biochim. Biophys. Acta, 1804, 929-940. doi:10.1016/j.bbapap.2010.01.004.
  • Li Z Y, Xu Z S, He G Y, Yang G X, Chen M, Li L C. (2012a). A mutation in Arabidopsis BSK5 encoding a brassinosteroid-signaling kinase protein affects responses to salinity and abscisic acid. Biochem. Biophys. Res. Commun., 426, 522-527. Doi: 10.1016/j.bbrc.2012.08.118.
  • Liu J, Li L, Yuan F, Chen M. (2019). Exogenous salicylic acid improves the germination of Limonium bicolor seeds under salt stress. Plant Signal. Behav., 14, e1644595. doi: 10.1080/15592324.2.019.1644595.
  • Liu S, Wang W, Li M, Wan S, Sui N. (2017). Antioxidants and unsaturated fatty acids are involved in salt tolerance in peanut. Acta Physiol. Plant., 39, 207.
  • Liu W, Li R-J, Han T-T, Cai W, Fu Z-W, Lu Y-T. (2015). Salt Stress Reduces Root Meristem Size by Nitric Oxide-Mediated Modulation of Auxin Accumulation and Signaling in Arabidopsis. Plant Physiology, 168, 343-356.
  • Liu W. (2015). Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signaling in Arabidopsis. Plant Physiol, 168, 343-356.
  • Lovato M B, de Lemos Filho J P, Martins P S. (1999). Growth responses of Stylosanthes humilis (Fabaceae) populations to saline stress. Environ. Exp. Bot., 41, 145-153. doi: 10.1016/S0098-8472(98)00057-4.
  • Ma N, Hu C, Lin W, Hu Q, Xiong J, Chunlei Z. (2017). Strigolactones improve plant growth, photosynthesis, and alleviate oxidative stress under salinity in rapeseed (Brassica napus L.) by regulating gene expression. Front. Plant Sci., 8, 1671. doi: 10.3389/fpls.2017.01671.
  • Maggio A, Barbieri G, Raimondi G, De Pascale S. (2010). Contrasting Effects of GA3 Treatments on Tomato Plants Exposed to Increasing Salinity. J. Plant Growth Regul., 29, 63-72.
  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K. (2008). The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis., Plant J., 56(4), 613-626. Https://doi.org/10.1111/j.313X.2008.03627.x.
  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Odadoi K. (2004). Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellins biosynthesis because of over expression of a putative AP2 transcription factor. Plant J., 37, 720729.
  • Mir B A, Khan T A, Fariduddin Q. (2015). 24-epibrassinolide and spermidine modulate photosynthesis and antioxidant systems in Vigna radiata under salt and zinc stress. Int. J. Adv. Res., 3, 592-608.
  • Mir M A, John R, Alyemeni M N, Alam P, Ahmad P. (2018). Jasmonic acid ameliorates alkaline stress by improving growth performance, ascorbate glutathione cycle and glyoxylase system in maize seedlings. Sci. Rep., 8, 2831.
  • Mok D W, Mok M C. (2001). Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol., 52, 89-118.
  • Moons A, Prisen E, Bauw G, Montagu M V. (1997). Antagonistic effects of abscisic acid and jasmonates on salt-inducible transcripts in rice roots. Plant Cell, 92, 243- 259.
  • Morgan P W, Drew M C. (1997). Ethylene and plant responses to stress. Physiol. Plant. 100, 620-630. Doi: 10.1111/j.1399-3054.1997.tb03068.x.
  • Naqvi S S M, Ansari R, Kuawada A N. (1982). Responses of salt stressed wheat seedlings to kinetin. Plant Sci. Lett., 26, 279-283.
  • Nasri S, Maatallah L, Saidi M Lachaal. (2017). Influence of salinity on germination, seedling growth, ion content and acid phosphatase activities of Linum usitatissimum L. J. Animal Plant Sci. , 27(2), pp. 517-521.
  • Okushima Y, Mitina I, Quach H L, Theologis A. (2005). AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. The Plant Journal, 43, 29-46.
  • Özdemir F, Bor M, Demiral T, Turkan I. (2004). Effects of 24- epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regul., 42, 203211.
  • Palma F, Lopez-Gomez M, Tejera N A, Lluch C. (2013). Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition. Plant Sci., 208, 75-82. Doi: 10.1016/j.plantsci.2013.03.015.
  • Parasher A, Varma S K. (1988). Effect of pre-sowing seed soaking in gibberellic acid on growth of wheat (Triticum aestivum L.) under different saline conditions. Indian J Biol. Sci., 26, 473-475.
  • Park C-M. (2007). GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. The Journal of Biological Chemistry, 282, 10036-46.
  • Pedranzani H, Racagni G, Alemano S, Miersch O, Ramirez I, Pena-Cortes H, Taleisnik E, Machado-Domenech E, Abdala G. (2003). Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul., 41, 149-158.
  • Peleg Z, Blumwald E. (2011). Hormone Balance and Abiotic Stress Tolerance in Crop Plants. Curr. Opin. Plant Biol., 14, 290-295.
  • Prakash L, Prathapasenan G. (1990). NaCl and gibberellic acid induced changes in the content of auxin, the activity of cellulose and pectin lyase during leaf growth in rice (Oryza sativa). Ann. Bot., 365, 251-257.
  • Qiu, Z B, Guo J L, Zhu A, Zhang L, Zhang M. (2014). Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicol. Environ. Saf., 104, 202-208.
  • Rahman M M, Mostofa M G, Rahman M A, Islam M R, Keya S S, Das A K, Miah M G, Kawser A Q M R, Ahsan S M, Hashem A. (2019). Acetic Acid: A Cost-Effective Agent for Mitigation of Seawater-Induced Salt Toxicity in Mung Bean. Sci. Rep., 9, 15186.
  • Ren C-G, Kong C-C, Xie Z-H. (2018). Role of abscisic acid in strigolactone- induced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings. BMC Plant Biol. 18, 74.
  • Sa F V d S, Brito M E B, Silva L d A, Moreira R C L, Paiva E P d, Souto L S. (2020). Exogenous Application of Phytohormones Mitigates the Effect of Salt Stress on Carica papaya. Plants. Rev. Bras. Eng. Agric. Ambient., 24, 170-175.
  • Safari D, Jamali F, Nooryazdan H R, Bayat F. (2018). Evaluation of ACC deaminase producing 'Pseudomonas fluorescens' strains for their effects on seed germination and early growth of wheat under salinity stress. Aust. J. Crop. Sci., 12, 413. doi: 10.21475/ajcs.18.12.03.pne801.
  • Sasse J M. (1997). Recent progress in brassinosteriod research. Physiol. Plantarum, 100, 696-701.
  • Seckin B, Sekmen A H, Türkan I'. (2009). An Enhancing Effect of Exogenous Mannitol on the Antioxidant Enzyme Activities in Roots of Wheat Under Salt Stress. J. Plant Growth Regul., 28, 12-20.
  • Shakirova F M, Sakhabutdinova A R, Bezrukova M V, Fatkhutdinova R A, Fatkhutdinova D R. (2003). Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci., 164 (3), 317-322. doi: 10.1016/s0168-9452(02)00415-6.
  • Shan C, Mei Z, Duan J, Chen H, Feng H, Cai W. (2014). OsGA2ox5, a gibberellin metabolism enzyme, is involved in plant growth, the root gravity response and salt stress. PLoS One, 9(1), e87110. https://doi.org/10.1371/journal.pone.0087110.
  • Shrivastava P, Kumar R. (2015). Soil Salinity: A Serious Environmental Issue and Plant Growth Promoting Bacteria as One of the Tools for Its Alleviation. Saudi J. Biol. Sci., 22, 123-131.
  • Silva N C, de Souza G A, Pimenta T M, Brito F A, Picoli E A, Zsögön A, Ribeiro D M. (2018). Salinity stress inhibits germination of Stylosanthes humilis seeds through abscisic acid accumulation and associated changes in ethylene production. Plant Physiol. Biochem., 130, 399-407. doi: 10.1016/j.plaphy.2018.07.025.
  • Silva P O, Medina E F, Barros R S, Ribeiro D M. (2014). Germination of salt-stressed seeds as related to the ethylene biosynthesis ability in three Stylosanthes species. J. Plant Physiol., 171, 14-22. doi: 10.1016/j.jplph.2013.09.004.
  • Sobhanian N, Pakniyat H, Kordshooli M A, Dorostkar S, Aliakbari M, Nasiri Z F. (2016). Electrophresis Study of Wheat (Triticum aestivum L.) Protein Changes under Salinity Stress. Sci. Res., 4, 33-36.
  • Song J, Wang B. (2015). Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model. Ann. Bot., 115, 541-553.
  • Srinivasan T, Kumar K R R, Meur G, Kirti P B. (2009). Heterologous expression of Arabidopsis NPR1 (AtNPR1) enhances oxidative stress tolerance in transgenic tobacco plants. Biotechnol. Lett., 31, 1343-1351.
  • Srivastava A K, Lokhande V H, Patade V Y, Suprasanna P, Sjahril R, Dsouza S F. (2010). Comparative evaluation of hydro-, chemo-, and hormonal-priming methods for imparting salt and PEG stress tolerance in Indian mustard (Brassica juncea L.). Acta Physiol. Plant., 32, 1135-1144. doi:10.1007/s11738-010-0505-y.
  • Tabur S, Demir K. (2009). Cytogenetic response of 24-epibrassinolide on the root meristem cells of barley seeds under salinity. Plant Growth Regul., 58, 119123.
  • Teale W D, Paponov I A, Palme K. (2006). Auxin in action: signalling, transport and the control of plant growth and development. Nature Reviews Molecular Cell Biology, 7, 847-859.
  • Tran L P, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchishinozaki K. (2007). Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc. Natl. Acad. Sci., USA, 104, 20623-20628.
  • Tsonev T D, Lazova G N, Stoinova Z G, Popova L P. (1998). A possible role for jasmonic acid in adaptation of barley seedlings to salinity stres. J. Plant Growth Regul, 17, 153-159.
  • Tuteja N, Gill S S, Trivedi P K, Asif M H, Nath P. (2010). Plant growth regulators and their role in stress tolerance. Plant Nutr. Abiotic Stress Toler. I Plant Stress, 4, 1-18.
  • Vankova R, Gaudinova A, Dobrev P I, Malbeck J, Haisel D, Motyka V. (2010). Comparison of salinity and drought stress effects on abscisic acid metabolites activity of cytokinin oxidase/dehydrogenase and chlorophyll levels in radish aud tabacco. Ecol. Quest., 14, 99-100.
  • Wahid A, Perveen M, Gelani S, Basra S M A. (2007). Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J. Plant Physiol., 164, 283-294.
  • Walia H, Wilson C, Condamine P, Liu X, Ismail A M, Close T J. (2007). Large-scale expression profiling and physiological characterization of jasmonic acid-mediated adaptation of barley to salinity stress. Plant Cell Environ, 30, 410-421.
  • Walia H, Wilson C, Wahid A, Condamine P, Cui X, Close T J. (2006). Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct. Integr. Genom, 6, 143-156.
  • Wang C, Yang Y, Wang H, Ran X, Li B, Zhang J, Zhang H. (2016). Ectopic expression of a cytochrome P450 monooxygenase gene PtCYP714A3 from Populus trichocarpa reduces shoot growth and improves tolerance to salt stress in transgenic rice. Plant Biotechnol. J., 14(9), 1838-1851. https://doi.org/10.1111pbi.12544.
  • Wang W, Xu Y, Chen T, Xing L, Xu K, Xu Y, Ji D, Chen C, Xie C. (2019). Regulatory Mechanisms Underlying the Maintenance of Homeostasis in Pyropia Haitanensis under Hypersaline Stress Conditions. Sci. Total Environ. 662, 168-179.
  • Wang X, Chen X, Wang Q, Chen M, Liu X, Gao D, Li D, Li L. (2019a). MdBZR1 and MdBZR1-2like transcription factors improves salt tolerance by regulating gibberellin biosynthesis in apple. Front. Plant Sci., 10, 1473. Doi: 10.3389/fpls.2019.01473.
  • Wang X, Hou C, Zheng K, Li Q, Chen S, Wang S. (2017). Overexpression of ERF96, a small ethylene response factor gene, enhances salinity tolerance in Arabidopsis. Biol. Plant, 61, 693-701. doi: 10.1007/s10535-017-0734-7.
  • Wang Z Y, Xiong L, Li W, Zhu J K, Zhu J. (2011). The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis. Plant Cell, 23, 1971-1984. DOI: 10.1105/tpc.110.081943.
  • Wasternack C, Hause B. (2002). Jasmonates and octadecanoids: signals in plant stress responses and development. Prog. Nucleic Acid Res. Mol. Biol., 72, 165-221.
  • Wei L-J, Deng X-G, Zhu T, Zheng T, Li P-X, Wu J-Q, Zhang D-W, Lin H-H. (2015). Ethylene is involved in brassinosteroids induced alternative respiratory pathway in cucumber (Cucumis sativus L.) seedlings response to abiotic stress. Front. Plant Sci., 6, 982. Doi; 10.3389/fpls.2015.00982.
  • Wilson R L, Kim H, Bakshi A, Binder B M. (2014). The ethylene receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 have contrasting roles in seed germination of Arabidopsis during salinity stress. Plant Physiol., 165, 1353-1366. doi: 10.1104/pp.114.241695.
  • Wu D, Ji J, Wang G, Guan C, Jin C. (2014). LchERF, a novel ethylene-responsive 76 transcription factor from Lycium chinense, confers salinity tolerance in transgenic tobacco. Plant Cell Rep., 33, 20332045. doi: 10.1007/s00299-014-1678-4.
  • Xu L, Xiang G, Sun Q, Ni Y, Jin Z, Gao Z, Yao Y. (2019). Melatonin enhances salinity tolerance by promoting MYB108A-mediated ethylene biosynthesis in grapevines. Hortic. Res., 6, 114. doi: 10.1038/s41438-019-0197-4.
  • Yan S. (2016). Different cucumber CsYUC genes regulate response to abiotic stresses and flower development. Sci. Rep., 6.
  • Yoon J Y, Hamayun M, Lee S K, Lee I J. (2009). Methyl jasmonate alleviated salinity stress in soybean. J. Crop Sci. Biotech., 12, 63-68.
  • Yuan F, Liang X, Li Y, Yin S, Wang B. (2018). Methyl jasmonate improves tolerance to high salt stress in the recretohalophyte Limonium bicolor. Fun. Plant Biol., 46, 82-92.
  • Zhang J-Y, Qu S-C, Qiao Y-S, Zhang Z, Guo Z-R. (2014). Overexpression of the Malus hupehensis MhNPR1 gene increased tolerance to salt and osmotic stress in transgenic tobacco. Mol. Biol. Rep., 41, 1553-1561.
  • Zhang S, Cai Z, Wang X. (2009). The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc. Natl. Acad. Sci., U. S. A. 106, 4543-4548. Doi: 10.1073/pnas.0900349106.
  • Zhang S, Yang R, Huo Y, Liu S, Yang G, Huang J, Zheng C, Wu C. (2018). Expression of cotton PLATZ1 in transgenic Arabidopsis reduces sensitivity to osmotic and salt stress for germination and seedling establishment associated with modification of the abscisic acid, gibberellin, and ethylene signalling pathways. BMC Plant Biol., 18, 218.
  • Zhang Y, Ruyter-Spira C, Bouwmeester H J. (2015). Engineering the plant rhizosphere. Curr. Opin. Biotechnol., 32, 136-142. Doi: 10.1016/j.copbio.2014.12.006
  • Zhao Y, Dong W, Zhang N, Ai X, Wang M, Huang Z, Xiao L, Xia G. (2014). A wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling. Plant Physiol. 164, 1068-1076.
  • Zhao Y. (2010). Auxin Biosynthesis and Its Role in Plant Development. Annual Review of Plant Biology, 61, 49-64.
  • Zhou J, Li Z, Xiao G, Zhai M, Pan X, Huang R, Zhang H. (2020). CYP71D8L is a key regulator involved in growth and stress responses by mediating gibberellin homeostasis in rice. J. Exp. Bot., 71(3), 1160-1170. Doi: 10.1093/jxb/erz491.
  • Zhu J K. (2002). Salt and drought stress signal transduction in plants. Annu Rev. Plant Biol., 53, 247-273.
  • Zhu N, Cheng S, Liu X, Du H, Dai M, Zhou D-X, Yang W, Zhao Y. (2015). The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice. Plant Sci. 236, 146-156. doi: 10.1016/j.plantsci.2015.03.023.
  • Zhu T, Deng X, Zhou X, Zhu L, Zou L, Li P, Zhang D, Lin H. (2016). Ethylene and hydrogen peroxide are involved in brassinosteroid-induced salt tolerance in tomato. Sci. Rep., 6, 35392. Doi: 10.1038/srep35392.
  • Zongshuai W, Xiangnan L, Xiancan Z, Shengqun L, Fengbin S, Fulai L, Yang W, Xiaoning Q, Fahong W, Zhiyu Z. (2017). Salt acclimation induced salt tolerance is enhanced by abscisic acid priming in wheat. Plant Soil Environ., 63, 307-314. doi:10.17221/287/2017-PSE.
Еще
Статья научная