Механика столкновений твердых тел: влияние трения и адгезии. II. Численное моделирование
Автор: Ляшенко Я.А., Виллерт Э., Попов В.Л.
Статья в выпуске: 4, 2018 года.
Бесплатный доступ
Данная работа представляет собой вторую часть обзора, посвященного физике двухчастичных столкновений твердых тел. В первой части описаны теоретические и экспериментальные работы по неупругим столкновениям твёрдых тел, в которых диссипация энергии обусловлена наличием внутреннего или внешнего трения, пластичности, адгезии, а также других каналов затухания. В настоящей части обзора мы уделили основное внимание случаю столкновений упругих частиц. Приведены результаты математического и численного моделирования, полученные авторами с применением метода редукции размерности, который позволяет описание трехмерного контакта свести к моделированию контактных процессов в эквивалентном одномерном пространстве. Рассмотрено три случая: столкновение между телами без проскальзывания (эквивалент бесконечного коэффициента трения), с конечным коэффициентом трения в зоне контакта и с наличием адгезионного взаимодействия, которое описывается в пределе JKR. Во всех рассматриваемых случаях идентифицированы определяющие процесс безразмерные переменные, и численно определены функции, задающие зависимости между этими переменными. Используя указанные безразмерные переменные, возможно рассчитать компоненты скоростей и циклическую частоту вращения, а значит, и траекторию шарика после столкновения, если известны аналогичные параметры до столкновения. Теоретические результаты сравниваются с опубликованными экспериментальными данными и показывают хорошее совпадение с известными экспериментами.
Толкновение, нормальный и тангенциальный контакт, адгезия, трение, скольжение, коэффициент восстановления, метод редукции размерности
Короткий адрес: https://sciup.org/146281888
IDR: 146281888 | DOI: 10.15593/perm.mech/2018.4.17
Список литературы Механика столкновений твердых тел: влияние трения и адгезии. II. Численное моделирование
- Dynamics of drag and force distributions for projectile impact in a granular medium / M.P. Ciamarra, A.H. Lara, A.T. Lee, D.I. Goldman, I. Vishik, H.L. Swinney // Phys. Rev. Lett. - 2004. - Vol. 92. - No. 19. - P. 194301.
- Jop P., Forterre Y., Pouliquen O. A constitutive law for dense granular flows // Nature. - 2006. - Vol. 441. - No. 7094. - P. 727-730.
- Model for collisions in granular gases / N.V. Brilliantov, F. Spahn, J.-M. Hertzsch, T. Pöschel // Phys. Rev. E. - 1996. - Vol. 53. - No. 5. - P. 5382-5392.
- Bernard B. Impacts in mechanical systems: analysis and modelling. - Berlin, New York: Springer, 2000. - 278 p.
- Attractive particle interaction forces and packing density of fine glass powders / E.J.R. Parteli, J. Schmidt, C. Blümel, K.-E. Wirth, W. Peukert, T. Pöschel // Sci. Rep. - 2014. - Vol. 4. - P. 6227 (7 pp.).