Механизмы естественного переноса митохондрий в норме и при онкопатологии
Автор: Кит О.И., Франциянц Е.М., Шихлярова А.И., Нескубина И.В.
Журнал: Ульяновский медико-биологический журнал @medbio-ulsu
Рубрика: Обзоры
Статья в выпуске: 3, 2023 года.
Бесплатный доступ
В представленном обзоре обсуждаются вопросы, касающиеся динамической природы митохондрий. Освещаются механизмы, задействованные в способности этих органелл выходить за границы клеток, тем самым позволяя осуществлять их перемещение между клетками млекопитающих. Митохондрии играют ключевую роль в выработке энергии и клеточных физиологических процессах. Эти органеллы очень динамичны, постоянно меняют свою морфологию, расположение в клетке и распределение в ответ на клеточный стресс. В последние годы феномен переноса митохондрий привлекает значительное внимание и интерес со стороны биологов и медицинских исследователей. Межклеточный перенос митохондрий происходит различными способами, включая туннельные нанотрубки (TNT), внеклеточные везикулы (EVS) и каналы щелевых соединений (GJC). Исследования межклеточного переноса митохондрий в физиологических и патологических условиях показали, что митохондриальный перенос обладает большим потенциалом для поддержания гомеостаза организма и регуляции патологических процессов. Недавно стало известно о высвобождении бесклеточных митохондрий в норме и патологических условиях (стресс, травмы) в кровь. Их обнаружили в виде циркулирующих внеклеточных митохондрий в крови мыши и человека. Несколько исследовательских групп разработали методы искусственного переноса / трансплантации здоровых митохондрий (AMT / T) в поврежденные клетки для восстановления клеточной функции. В этой статье рассматриваются способы, механизмы и новейшие методы межклеточного спонтанного митохондриального переноса AMT / T. Кроме того, обсуждается потенциальная ценность и механизм применения AMT / T в лечении заболеваний, в т.ч. и злокачественных новообразований.
Митохондрии, злокачественные новообразования, естественный перенос митохондрий, перенос митохондрий в условиях патологии
Короткий адрес: https://sciup.org/14128735
IDR: 14128735 | DOI: 10.34014/2227-1848-2023-3-14-29
Список литературы Механизмы естественного переноса митохондрий в норме и при онкопатологии
- Франциянц Е.М., НескубинаИ.В., Черярина Н.Д., Сурикова Е.И., ШихляроваА.И., Бандовкина В.А., Немашкалова Л.А., Каплиева И.В., Трепитаки Л.К., Качесова П.С., Котиева И.М., МорозоваМ.И., Погорелова Ю.А. Функциональное состояние митохондрий кардиомиоцитов при злокачественном процессе на фоне коморбидной патологии в эксперименте. Южно-Российский онкологический журнал. 2021; 2 (3): 13-22.
- Кит О.И., Франциянц Е.М., Нескубина И.В., Сурикова Е.И., Каплиева И.В., Бандовкина В.А. Влияние варианта развития меланомы В16/F10 на содержание кальция в митохондриях различных органов самок мышей. Исследования и практика в медицине. 2021; 8 (1): 20-29.
- Heineman B.D., LiuX., Wu G.Y. Targeted Mitochondrial Delivery to Hepatocytes: A Review. Journal of clinical and translational hepatology. 2022; 10 (2): 321-328.
- Porat-Shliom N., Harding O.J., Malec L., Narayan K., Weigert R. Mitochondrial Populations Exhibit Differential Dynamic Responses to Increased Energy Demand during Exocytosis In Vivo. Science. 2019; 11: 440-449.
- Roy S., Kim D., Sankaramoorthy A. Mitochondrial structural changes in the pathogenesis of diabetic retinopathy. J. Clin. Med. 2019; 8 (9): 1363.
- Su B.K., Lee S.A., PakK., Su Wu, Kim S.J., Woo Wu. Disbindin, associated with schizophrenia, modulates mitochondrial axonal movement in collaboration with p150 glued. Molbrain. 2021; 14 (1): 14.
- Valenti D., Vacca R.A., Moro L., Atlante A. Mitochondria Can Cross Cell Boundaries: An Overview of the Biological Relevance, Pathophysiological Implications and Therapeutic Perspectives of Intercellular Mitochondrial Transfer. International journal of molecular sciences. 2021; 22 (15): 8312.
- Singh B., Modica-Napolitano J.S., Singh K.K. Defining the momiome: Promiscuous information transfer by mobile mitochondria and the mitochondrial genome. Semin. Cancer Biol. 2017; 47: 1-17.
- Shanmughapriya S., Langford D., Natarajaseenivasan K. Inter and Intracellular mitochondrial trafficking in health and disease. Ageing Res. Rev. 2020; 62: 101128.
- Liu Z., Sun Y., Qi Z., Cao L., Ding S. Mitochondrial transfer/transplantation: an emerging therapeutic approach for multiple diseases. Cell & bioscience. 2022; 12 (1): 66.
- Liu D., Gao Y., Liu J., Huang Y., Yin J., Feng Y. Intercellular mitochondrial transfer as a means of tissue revitalization. Signal Transduct. Target. Ther. 2021; 6: 1-18.
- Zampieri L.X., Silva-Almeida C., Rondeau J.D., Sonveaux P. Mitochondrial Transfer in Cancer: A Comprehensive Review. Int J Mol Sci. 2021; 22 (6): 3245.
- Torralba D., Baixauli F., Sánchez-Madrid F. Mitochondria know no boundaries: Mechanisms and functions of intercellular mitochondrial transfer. Front Cell Dev Biol. 2016; 4: 107.
- Paliwal S., Chaudhuri R., Agrawal A., Mohanty S. Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. J Biomed Sci. 2018; 25 (1): 31.
- Li H., Wang C., He T., Zhao T., Chen Y.Y., Shen Y.L. Mitochondrial transfer from bone marrow mesenchymal stem cells to motor neurons in spinal cord injury rats via gap junction. Theranostics. 2019; 9 (7): 2017-2035.
- Gollihue J.L., Patel S.P., Mashburn C., Eldahan K.C., Sullivan P.G., Rabchevsky A.G. Optimization of mitochondrial isolation techniques for intraspinal transplantation procedures. J. Neurosci. Methods. 2017; 287: 1-12.
- Chang J.C., Hoel F., Liu K.H., Wei Y.H., Cheng F.C., Kuo S.J. Peptide-mediated delivery of donor mitochondria improves mitochondrial function and cell viability in human cybrid cells with the MELAS A3243G mutation. Sci Rep. 2017; 7 (1): 10710.
- Liu X., Khouri-Farah N., Wu C.H., Wu G.Y. Targeted delivery of mitochondria to the liver in rats. J. Gastroenterol. Hepatol. 2020; 35 (12): 2241-2247.
- Dong L.-F., Kovarova J., Bajzikova M., Bezawork-Geleta A., Svec D., Endaya B. Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. eLife. 2017; 6: e22187.
- Delvaeye T., Vandenabeele P., Bultynck G., LeybaertL., Krysko D. V. Therapeutic Targeting of Connexin Channels: New Views and Challenges. Trends Mol Med. 2018; 24 (12): 1036-1053.
- Morrison T.J., Jackson M.V., Cunningham E.K., Kissenpfennig A., McAuley D., O'Kane C. Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer. Am. J. Respir. Crit. Care Med. 2017; 196: 1275-1286. DOI: https://doi.org/ 10.1164/rccm.201701-0170OC.
- Qin Y., JiangX., Yang Q., Zhao J., Zhou Q., Zhou Y. The Functions, Methods, and Mobility of Mitochondrial Transfer Between Cells. Front. Oncol. 2021; 11: 672781.
- Austefjord M.W., Gerdes H.H., Wang X. Tunneling nanotubes: diversity in morphology and structure. Commun Integr Biol. 2014; 7 (1): e27934.
- Vignais M.L., Caicedo A., Brondello J.M. Cell connections by tunneling nanotubes: effects of mitochondrial trafficking on target cell metabolism, homeostasis, and response to therapy. Stem Cells Int. 2017; 2017: 6917941.
- Ljubojevic N., Henderson J.M., Zurzolo C. The ways of actin: why tunneling nanotubes are unique cell protrusions. Trends Cell Biol. 2021; 31 (2): 130-142.
- Yang F., Zhang Y., Liu S., Xiao J., He Y., Shao Z. Nanotube-mediated mitochondrial tunneling rescues nucleus pulposus cells from mitochondrial dysfunction and apoptosis. Oxidative cellular longevity. 2022; 2022: 3613319.
- Yang C., Endoh M., Tan D.Q., Nakamura-Ishizu A., Takihara Y., Matsumura T., Suda T. Mitochondria transfer from early stages of eiythroblasts to their macrophage niche via tunnelling nanotubes. Br. J. Haematol. 2021; 193 (6): 1260-1274.
- Wang X., Gerdes H.H. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ. 2015; 22 (7): 1181-1191.
- Abraham A., KrasnodembskayaA. Mesenchymal stem cell-derived extracellular vesicles for the treatment of acute respiratory distress syndrome. Stem Cells Transl. Med. 2020; 9 (1): 28-38.
- Meng W., He C., Hao Y., Wang L., Li L., Zhu G. Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source. Drug Deliv. 2020; 27 (1): 585-598.
- Varcianna A., Myszczynska M.A., Castelli L.M., O'Neill B., Kim Y., Talbot J. Micro-RNAs secreted through astrocyte-derived extracellular vesicles cause neuronal network degeneration in C9orf72 ALS. EBioMedicine. 2019; 40: 626-635.
- HayakawaK., Esposito E., WangX., Terasaki Y., Liu Y., Xing C. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 2016; 535 (7613): 551-555.
- Nicolás-Avila J.A., Lechuga-Vieco A.V., Esteban-Martínez L., Sánchez-Díaz M., Díaz-García E., Santiago D.J. A network of macrophages supports mitochondrial homeostasis in the heart. Cell. 2020; 183 (1): 94-109.
- Hough K.P., Trevor J.L., Strenkowski J.G., Wang Y., Chacko B.K., Tousif S. Exosomal transfer of mitochondria from airway myeloid-derived regulatory cells to T cells. Redox Biol. 2018; 18: 54-64.
- Simeone P., Bologna G., Lanuti P., Pierdomenico L., Guagnano M.T., Pieragostino D. Extracellular vesicles as signaling mediators and disease biomarkers across biological barriers. Int. J. Mol. Sci. 2020; 21: 2514.
- Sansone P., Savini C., Kurelac I., Chang Q., Amato L.B., Strillacci A. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc. Natl. Acad. Sci. USA. 2017; 114: E9066-E9075.
- Murray L.M.A., Krasnodembskaya A.D. Concise review: intercellular communication via organelle transfer in the biology and therapeutic applications of stem cells. Stem Cells. 2019; 37 (1): 14-25.
- Mohammadalipour A., Dumbali S.P., WenzelP.L. Mitochondrial transfer and regulators of mesenchymal stromal cell function and therapeutic efficacy. Front Cell Dev Biol. 2020; 8: 603292.
- Senos Demarco R., Jones D.L. Mitochondrial fission regulates germ cell differentiation by suppressing ROS-mediated activation of epidermal growth factor signaling in the Drosophila larval testis. Sci. Rep. 2019; 9 (1): 19695.
- Alarcon-Martinez L., Villafranca-Baughman D., Quintero H., Kacerovsky J.B., Dotigny F., Murai K.K. Interpericyte tunnelling nanotubes regulate neurovascular coupling. Nature. 2020; 585 (7823): 91-95.
- Pinto G., Saenz-de-Santa-Maria I., Chastagner P., Perthame E., Delmas C., Toulas C. Patient-derived glioblastoma stem cells transfer mitochondria through tunneling nanotubes in tumor organoids. Biochem J. 2021; 478 (1): 21-39.
- Maeda A., Fadeel B. Mitochondria released by cells undergoing TNF-alpha-induced necroptosis act as danger signals. Cell Death Dis. 2014; 5: e1312.
- Phinney D.G., Di Giuseppe M., Njah J., Sala E., Shiva S., St Croix C.M. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun. 2015; 6: 8472.
- Mahrouf-Yorgov M., Augeul L., Da Silva C.C., Jourdan M., Rigolet M., Manin S. Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties. Cell Death Differ. 2017; 24 (7): 1224-1238.
- Sahinbegovic H., Jelinek T., Hrdinka M., Bago J.R., Turi M., Sevcikova T. Intercellular Mitochondrial Transfer in the Tumor Microenvironment. Cancers. 2020; 12: 1787.
- Nakahira K., Hisata S., Choi A.M. The Roles of Mitochondrial Damage-Associated Molecular Patterns in Diseases. Antioxid. Redox Signal. 2015; 23: 1329-1350.
- Roh J.S., Sohn D.H. Damage-Associated Molecular Patterns in Inflammatory Diseases. Immune Netw. 2018; 18: e27.
- Lu J., Zheng X., Li F., Yu Y., Chen Z., Liu Z. Tunneling nanotubes promote intercellular mitochondria transfer followed by increased invasiveness in bladder cancer cells. Oncotarget. 2017; 8: 15539-15552.
- Herst P.M., Dawson R.H., Berridge M.V. Intercellular Communication in Tumor Biology: A Role for Mitochondrial Transfer. Front. Oncol. 2018; 8: 344.
- Jurj A., Zanoaga O., Braicu C., Lazar V., Tomuleasa C., Irimie A., Berindan-Neagoe I. A Comprehensive Picture of Extracellular Vesicles and Their Contents. Molecular Transfer to Cancer Cells. Cancers (Basel). 2020; 12 (2): 298.
- BurtR., DeyA., Aref S., Aguiar M., Akarca A., Bailey K. Activated stromal cells transfer mitochondria to rescue acute lymphoblastic leukemia cells from oxidative stress. Blood. 2019; 134: 1415-1429.
- Marlein C.R., PiddockR.E., Mistry J.J., ZaitsevaL., Hellmich C., Horton R.H. CD38-Driven Mitochondrial Trafficking Promotes Bioenergetic Plasticity in Multiple Myeloma. Cancer Res. 2019; 79: 2285-2297.
- Spees J.L., Olson S.D., WhitneyM.J., Prockop D.J. Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl. Acad. SciUSA. 2006; 103: 1283-1288.
- Tan A.S., Baty J., Dong L., Bezawork-Geleta A., Endaya B., Goodwin J. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 2015; 21: 81-94.
- Michael V. Berridge, Lanfeng Dong, Jiri Neuzil. Mitochondrial DNA in Tumor Initiation, Progression, and Metastasis: Role of Horizontal mtDNA Transfer. Cancer Res. 2015; 75 (16): 3203-3208.
- Marlein C., Zaitseva L., Piddock R., Shafat M., Collins A., Bowles K., Rushworth S. PGC1a driven mitochondrial biogenesis within the bone marrow stromal cells of the acute myeloid leukemia micro-environment is a pre-requisite for mitochondrial transfer to leukemic blasts. Leukemia. 2017; 32: 2073-2077.
- Marlein C.R., Zaitseva L., Piddock R.E., Robinson S.D., Edwards D.R., Shafat M.S. NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. Blood. 2017; 130: 1649-1660.
- Bajzikova M., Kovarova J., Coelho A.R., Boukalova S., Oh S., Rohlenova K. Reactivation of dihydrooro-tate dehydrogenase-driven pyrimidine biosynthesis restores tumor growth of respiration-deficient cancer cells. Cell Metab. 2019; 29: 399-416.
- Ippolito L., Morandi A., Taddei M.L., Parri M., Comito G., Iscaro A. Cancer-associated fibroblasts promote prostate cancer malignancy via metabolic rewiring and mitochondrial transfer. Oncogene. 2019; 38: 5339-5355.
- Hekmatshoar Y., Nakhle J., Galloni M., Vignais M.L. The role of metabolism and tunneling nanotube-me-diated intercellular mitochondria exchange in cancer drug resistance. Biochem. J. 2018; 475: 2305-2328.
- Court A.C., Le-Gatt A., Luz-Crawford P., Parra E., Aliaga-Tobar V., Bätiz L.F., Contreras R.A., Ortü-zar M.I., Kurte M., Elizondo-Vega R. Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response. EMBO Rep. 2020; 21: e48052.
- Kit O.I., Shikhlyarova A.I., Frantsiyants E.M., Neskubina I.V., Kaplieva I.V., Zhukova G.V., Trepita-ki L.K., Pogorelova Y.A., Bandovkina V.A., Surikova E.I., Popov I.A., Voronina T.N., Bykadorova O.V., Serdyukova E. V. Mitochondrial therapy: direct visual assessment of the possibility of preventing myocar-dial infarction under chronic neurogenic pain and b16 melanoma growth in the experiment. Cardiometry. 2022; 22: 38-49.
- Kit O.I., Frantsiyants E.M., Shikhlyarova A.I., Neskubina I.V., Kaplieva I.V., Cheryarina N.D., Veresku-nova A.A., Trepitaki L.K., Pogorelova Y.A., Bandovkina V.A., Surikova E.I., Kachesova P.S., Sheiko E.A., Kotieva I.M., Gusareva M.A., Luganskaya R.G., Bosenko E.S. Biological effects of mitochondrial therapy: preventing development of myocardial infarction and blocking metastatic aggression of B16/F10 melanoma. Cardiometry. 2022; 22: 50-55.
- Kit O.I., Frantsiyants E.M., Neskubina I.V., Shikhlyarova A.I., Kaplieva I.V. Mitochondrial therapy: a vision of the outlooks for treatment of main twenty-first-centoy diseases. Cardiometry. 2022; 22: 18-27.
- Kit O.I., Frantsiyants E.M., Shikhlyarova A.I., Neskubina I.V., Kaplieva I.V., Trepitaki L.K., Pogore-lova Y.A., Cheryarina N.D., Vereskunova A.A., Bandovkina V.A., Surikova E.I., Maksimova N.A., Kotie-va I.M., Gusareva M.A., Pozdnyakova V.V. Mitochondrial therapy of melanoma B16/F10, pathophysiological parameters of tumor regression. Cardiometry. 2022; 22: 56-61.
- Miliotis S., Nicolalde B., Ortega M., Yepez J., Caicedo A. Forms of extracellular mitochondria and their impact in health. Mitochondrion. 2019; 48: 16-30.
- Stephens O.R., GrantD., FrimelM., Wanner N., YinM., WillardB., Erzurum S.C., Asosingh K. Characterization and origins of cell-free mitochondria in healthy murine and human blood. Mitochondrion. 2020; 54: 102-112.
- Dache Z.A.A., Otandault A., Tanos R., Pastor B., Meddeb R., Sanchez C., Arena G., Lasorsa L., Bennett A., Grange T. Blood contains circulating cell-free respiratory competent mitochondria. FASEB J. 2020; 34: 3616-3630.
- Stier A. Human blood contains circulating cell-free mitochondria, but are they really functional? Am. J. Physiol. Metab. 2021; 320: e859-863.