Механизмы поддержания и изменений формы и размеров клеточного ядра (обзор)
Автор: Арешидзе Давид Александрович
Журнал: Морфологические ведомости @morpholetter
Рубрика: Оригинальные исследования
Статья в выпуске: 3 т.30, 2022 года.
Бесплатный доступ
Размер и форма клеточного ядра являются одними из часто используемых параметров в исследованиях отечественных и зарубежных авторов, не только как необходимые для расчета ядерно-цитоплазматического отношения клетки в онтогенезе, дифференцировке, при патологических процессах, но и имеющие ценность сами как таковые. Однако в дискуссиях высказываются две крайние точки зрения на ценность информации о форме и, особенно, о размере ядра. Согласно первой точке зрения морфометрия размеров и формы ядра клетки без измерения цитоплазмы с последующим вычислением ядерно-цитоплазматического отношения не имеет никакого смысла, а полученные данные не несут значимой информации. Сторонники второй точки зрения рассматривают клеточное ядро как лабильный и значимый индикатор морфофункционального состояния клетки, размер и форма которого меняются при нормальном старении, патологических состояниях, пролиферации, экспрессии генов и синтезе белков. В связи с этим проведен мета-анализ современной научной литературы, посвященной исследованию механизмов поддержания и изменения размеров и формы ядра клетки. Полученные данные подвергались аналитическому исследованию на предмет формулировок и объяснения структур, факторов и механизмов поддержания, изменения размеров, формы ядра клетки. На основе анализа данных отечественных и зарубежных источников можно с уверенностью утверждать о том, что количество ДНК в ядре не является единственным фактором, определяющим его размеры и форму, но на ядерную морфологию могут влиять структура и модификация хроматина. Можно считать доказанным, что ведущими структурами клетки, определяющими размер и форму клеточного ядра, являются цитоскелет, комплекс ядерных пор, ядерная мембрана, эндоплазматический ретикулум, а факторами - ядерно-цитоплазматический обмен и осмолярность. Дальнейшее изучение структур и факторов, влияющих на размер и форму ядра, установление взаимосвязи между его морфологией и процессами, происходящими на тканевом и клеточном уровнях, обещает предоставить новые подходы к диагностике, профилактике и лечению ряда заболеваний.
Клеточное ядро, ядерно-цитоплазматическое отношение, кариолемма, белки ядерной мембраны, ламинины
Короткий адрес: https://sciup.org/143178744
IDR: 143178744 | DOI: 10.20340/mv-mn.2022.30(3).670
Текст научной статьи Механизмы поддержания и изменений формы и размеров клеточного ядра (обзор)
Арешидзе Д.А. Механизмы поддержания и изменений формы и размеров клеточного ядра (обзор). Морфологические ведомости. 2022;30(3):654. (3).670
Areshidze DA. Mechanisms of the keeping and change of forms and sizes of the cell nuclei (Review). Morfologicheskie Vedomosti – Morphological newsletter. 2022;30(3):649. (3).670
Article received 10 March 2022 Article accepted 11 August 2022
Введение. Органоиды любой клет- мическим изменениям, что является следки, в том числе и ядро, подвержены дина- ствием их уникального химического со става и строения, а также результатом взаимодействия с цитоскелетом, другими органоидами и клетками. Аберрантный размер ядра связан со многими видами рака и широко используется в качестве биомаркера [1-2]. Но остается не ясным, вносят ли изменения размера ядра непосредственный вклад в опухолеобразование или следуют за ним. Необходимо отметить, что изменения размера ядра в гистологически нормальных клетках, окружающих опухоль, наблюдались при некоторых типах рака [3-4]. Это позволяет предположить, что изменения размера ядра могут происходить на ранних этапах трансформации и действовать как прайминговое событие [5]. Нарушение ядерно-цитоплазматичес-кого транспорта, сопровождающееся изменением размера ядер, также характерно для онкологических заболеваний [6-7]. Предполагается, что изменение структуры и размера ядра, при котором наблюдается снижение адаптационной устойчивости, обусловливает облегчение распространения метастазов [8]. Установлено, что размеры ядер клеток в норме претерпевают циклические колебания. Были охарактеризованы ритмы колебаний разной периодичности для размеров ядер различных клеток млекопитающих [9-15].
У эукариота соотношение объемов всех органоидов к объему ядра является достаточно постоянной величиной. Наиболее известным и часто применяемым в практике является определение соотношения ядерного и цитоплазматического объемов, названное автором термина Р. Гертвигом кариоплазматическим отношением, в русскоязычной литературе называемое также ядерно-цитоплазмати-ческим отношением (далее - ЯЦО). Этот динамический микро-морфометрический показатель находится в зависимости как от размеров клетки, так и от величины клеточного ядра. Размер и форма клеточного ядра являются одним из часто используемых параметров в исследованиях отечественных и зарубежных авторов, не только как необходимые для расчета ЯЦО клетки в онтогенезе, дифференцировке, при патологических процессах, но и имеющие ценность сами по себе как таковые.
В дискуссиях высказываются две крайние точки зрения на ценность информации о форме, и особенно о размере ядра. Согласно первой точке зрения, морфометрия размеров и формы ядра клетки без измерения цитоплазмы с последующим вычислением ЯЦО не имеет никакого смысла, а полученные данные не несут значимой информации [16-17]. В то же время, сторонники второй точки зрения рассматривают клеточное ядро как лабильный и значимый индикатор морфофункционального состояния клетки, размер и форма которого меняются при нормальном старении [18-19], патологических состояниях [20-21], пролиферации, экспрессии генов и синтезе белков [23-24]. Измерения среднего размера ядер и их формы (площади поперечного сечения или объема), наблюдаемые в различных условиях, являются интегральным производным двух факторов. Во-первых, они могут быть связаны с истинной функциональной флуктуацией размеров ядер. Во-вторых, изменение средних размеров ядер клеток может происходит за счет полип-лоидизации клеток, но классиками отечественной патологической анатомии – Струковым и Серовым указывается: «Размеры ядер и ядерных структур независимо от плоидии в значительной мере определяются функциональным состоянием клетки» (цит. по [25]). Однако, в последнее время, даже это положение подвергается ревизии.
Цель исследования – мета-анализ современной научной литературы, посвященной исследованию механизмов поддержания и изменения размеров и формы ядра клетки механизмов поддержания и изменения размеров, и формы ядра клетки.
Материалы и методы исследования заключались в поиске статей в базах данных РИНЦ, PubMed (MEDLINE) и иных базах данных и источников научной информации по следующим ключевым словам: ядро, форма ядра, цитоплазма, цитоскелет, эндоплазматический ретикулум, nucleus, nucleus shape, cytoplasm, cytoskeleton, endoplasmic reticulum. Полученные данные подвергались аналитическому исследованию на предмет форму- лировок и объяснения существа механизмов поддержания и изменения размеров, формы ядра клетки.
Результаты исследования и обсуждение.
Механизмы поддержания и изменения размеров и формы клеточного ядра Давно известно, что размер ядра в целом масштабируется с размером клетки, а корреляции между ними наблюдаются у широкого диапазона видов и типов клеток. Клетки разных тканей многоклеточного животного могут иметь разное соотношение размера ядра к ее собственному размеру, но каждый тип клеток обычно ограничен достаточно узким диапазоном изменений. На размер ядра влияет целый ряд биологических процессов, в которых участвует клетка, и ее свойств, контроль размера ядра является результатом комбинации различных факторов, причем разные факторы проявляются в разных условиях [26-27]. Несмотря на то, что принято считать, что размер ядра и размер клетки обычно масштабируются в зависимости от содержания ДНК и плоидности, однако, именно размер клетки, а не прямое влияние содержания ДНК, по-видимому, является основным фактором, определяющим параметры ядра в большинстве физиологических условий. Jevtić и Levy обнаружили, что изменение содержания ДНК не приводило к изменению масштабирования между размером ядра и размером клетки у делящихся дрожжей [28]. Neumann и Nurse получили сведения, что несмотря на неизменное содержание ДНК, объем ядра увеличивается вместе с объемом клеток клеточной культуры HeLa [29]. Имеются данные, о том, что размер ядра уменьшается по мере снижения размеров клеток во время ре-дуктивных делений [30], несмотря на то, что содержание ДНК остается постоянным. Таким образом, размеры ядра не связаны напрямую с содержанием в них ДНК.
Цитоскелет
Важным компонентом, участвующим в изменении размера и формы клеточного ядра, является цитоскелет, играющий активную роль в создании внешнего каркаса, позиционировании, а также в деформации ядра, однако при этом кон- кретные действующие механизмы, вероятно, различаются и могут зависеть от подвижности клетки и внешних воздействий [31]. При делении клетки цитоскелет активно участвует в деформации и разрушении ядерной оболочки в начале этого процесса [32-33]; также он участвует в изменении формы ядра, например, при образовании пронуклеусов сперматозоидов [34-35]. В значительном количестве исследований [36-39] было показано, что перинуклеарные актиновые сети, состоящие из пучков актиновых филаментов, называемых трансмембранными актин-ассоциированными ядерными линиями (или актиновым колпачком, актиновой шапочкой), прикрепляющиеся непосредственно к ядру при помощи молекул, называемых линкерами ядра с цитоскелетом или LINC, вместе с их регуляторными белками в значительной мере контролируют форму ядра. Ведущая роль цитоскелета, в частности степени напряжения актомиозина, в изменении геометрии клеточного ядра также показана в исследовании Chen [40]. Одними из белков, принимающих участие в связи ядерной мембраны с актиновыми филаментами, являются несприны. Нокдаун Nesprin-2-Giant в культивируемых фибробластах и керати-ноцитах человека приводит к двукратному увеличению размеров ядер этих клеток [41]. Также показана ведущая роль перинуклеарного актина и микротрубочек цитоплазмы в изменении пространственной архитектуры ядра, отраженного в его индексе формы и индексе положения [42].
Комплекс ядерных пор
Другим фактором, определяющим форму и размер ядра клетки, является комплекс ядерных пор (далее - NPC), каждая из которых построена из белков нук-леопоринов. NPC встроены в ядерную оболочку в местах слияния внутренней и внешней ядерных мембран, основной функцией их является регуляция обмена веществ между ядром клетки и цитоплазмой посредством взаимодействия с молекулами-переносчиками кариоферинов [19-20]. Нуклеопорины оказывают непосредственное влияние на форму и размер ядра клетки. Так, кариоферины NUP1 и NUP60 придают кривизну внутренней ядерной мембране в норме как in vitro так in vivo, в определенных условиях вызывают и деформацию ядерной оболочки, участвуют в поддержании целостности NPC и их биогенезе. У Xenopus Laevis ядра, лишенные кариоферина Nup188, увеличиваются в размерах в несколько раз по сравнению с ядрами дикого типа, что обуславливается ускоренным проникновением интегральных мембранных белков через NPC, в норме ограничиваемого ка-риоферином Nup188 [45-47]. С изменениями свойств и структуры нуклеопоринов связаны изменения размеров ядер и у других видов, в том числе и у человека [48-49].
Ядерная мембрана
Ядерная мембрана или кариолем-ма, фибриллярная сеть жесткой структуры, образованная белками-ламининами, подстилает ядерную мембрану (находится под ядерной мембраной). Ламинины играют важную роль в широком спектре ядерных функций, включая организацию хроматина, экспрессию генов, репликацию и репарацию ДНК, передачу сигналов и механические свойства ядра [50-51]. Влияние хроматина на форму и размеры ядра до определенной меры осуществляется через ламинин-ассоциированные домены (далее - LAD), представляющие собой транскрипционно репрессированные домены, располагающиеся на ядерной оболочке [45]. Делеция гена ламинина B в эмбриональных стволовых клетках мышей приводит к уменьшению взаимодействия LAD и ядерной мембраны, что обусловливает деформацию ядра [46]. Доказано участие ламинина A и С в регуляции формы ядра [47-49]. Эта структура принимает также важное участие в организации и поддержании размеров и формы ядра у разных видов живых организмов, от дрожжей до человека [52-55]. Взаимосвязь между уровнем экспрессии ламинина и размерами ядра описана рядом исследователей [56-59]. Размер ядер млекопитающих также чувствителен к уровням экспрессии ламинина. У пациентов с ламининопати-ей обычно обнаруживаются ядра неправильной формы, что также указывает на роль ламининов в поддержании нормальной морфологии ядер [60-62]. Хроническая интоксикация мышей гризеофульви- ном приводит к снижению содержания в гепатоцитах ламинина B-типа, что вызывает серьезные изменения цитоскелета гепатоцитов, аналогичные тем, которые обнаруживаются при алкогольном гепатите у людей. В таких гепатоцитах отмечено нарушение и уменьшение сети кератиновых филаментов, появление телец Малл-ори-Денка [63]. Установлено, что ламинины агрегируются при окислительном повреждении печени, что наблюдается и в эксплантатах печени пациентов с алкогольным циррозом и сопровождается изменением формы и размера ядер гепатоцитов [64].
Эндоплазматический ретикулум
В настоящее время хорошо изучена роль эндоплазматического ретикулума (далее - ЭПР) в поддержании формы и размеров ядра, что было подробно охарактеризовано для Xenopus Laevis и дрожжевых клеток [65-68]. Взаимодействие ЭПР и ядерной мембраны обеспечивает сохранение относительно постоянных размеров ядра в интерфазе [69]. Примечательно, что достаточно часто при злокачественных новообразованиях изменяется уровень ретикулона - структурного компонента ЭПР, что сопровождается изменением размеров и формы клеточного ядра в опухолевых клетках [70-72]. В отличие от других мембраносвязанных органелл, которым ЭПР поставляет липиды посредством везикулярного транспорта, ядерная мембрана является продолжением ЭПР, что позволяет осуществлять прямой транспорт липидов в ядро [73-74], воздействуя как на форму, так и на размер последнего. Несмотря на то, что внутренняя ядерная оболочка также метаболически активна [75], пока неясно, оказывают ли эти продукты обмена веществ в ней прямое влияние на форму или размер, однако, исключать этот фактор нельзя.
Ядерно-цитоплазматический обмен и осмолярность
Ядерно-цитоплазматический обмен участвует в регуляции размера ядра во многих системах. Изменения размера ядра, вероятно, вызываются объемным ядер-но-цитоплазматическим транспортом, а не переносом какого-то одного фактора. Предполагается, что ядерно-цитоплазма- тический транспорт и расширение ядер-ной оболочки имеют решающее значение для увеличения размера ядра в растущих клетках [76]. Нарушение экспорта ядер-ных белков приводит к увеличению размера ядра в клетках млекопитающих [77]. Ganguly et al. (2016) было высказано мнение о том, что изменение клеточного осмоса (перенос растворителя через полупроницаемую мембрану) влияет на размер ядра в хондроцитах крупного рогатого скота, что позволяет предположить, важную роль осмотического давления в изменении размера ядра [78]. Изменение осмолярности может влиять, как на размер, так и на форму ядра, но в физиологическом диапазоне эти сдвиги не влияют на изолированные ядра [79-80]. Последние исследования свидетельствуют в пользу того, что размер ядра клеток в значительной доле определяется осмотическим давлением, создаваемым цитозольными макромолекулами на ядерной мембране, и разностью поверхностных натяжений мембраны ядра и ЭПР [81], что согласуется с предыдущими экспериментальными исследованиями, показавшими, что эти макромолекулы и кариолемма играют центральную роль в регуляции размера ядра в клетках многоклеточных [82-88].
Таким образом, среди факторов, участвующих в поддержании размеров и формы клеточного ядра можно выделить следующие: цитоскелет, комплекс ядер-ных пор, ядерная мембрана, эндоплазматический ретикулум, ядерно-цитоплазматический обмен и осмолярность. Кроме злокачественных новообразований также многие другие болезни сопровождаются изменением размеров и формы ядра. У млекопитающих, в том числе и у человека, делеции или мутации мембранных белков - эмерина 177, ламининов А и С и других, наблюдающиеся при мышечной дистрофии, преждевременном старении, ламининопатиях [8990], вызывают изменения морфологии ядра. Однако почти все без исключения эти факты изменения геометрии клеточного ядра носят в основном корреляционные, а не четко идентифицируемые причинные связи. Большая часть исследований, посвященных изучению изменений клеточ- ного ядра, в настоящее время проводятся на таких организмах, как дрожжи, лягушки (Xenopus Laevis), рыбы (Danio Rerio), на опухолевых клетках, а также на гепатоцитах, которые являются одним из часто используемых объектов исследований in vitro и in vivo, в норме и измененных состояниях. Так, приобретение ядрами гепатоцитов неправильной формы рассматривается как показатель высокой интенсивности метаболизма [91]. Охарактеризовано увеличение размера клеток и ядер, наблюдаемое при экспозиции гепатоцитов мышей с белками семейства факторов транскрипции (c-Myc и других), которые регулируют рост и вступление в клеточный цикл [92]. Показано также, что при стрессе эндоплазматического ретикулума, тесно связанного с патогенезом фиброза печени, белок Nogo-B (ретикулон 4В) может усиливать прогрессирование фиброза за счет подавления апоптоза гепатоцитов [93]. При дефиците N-гликаназы (Nglyl) -цитоплазматического пептида, участвующего в поддержании функционирования ЭПР, в печени мышей наблюдается аномальное увеличение размера ядер гепатоцитов и деструкция их формы. Установлено, что высокая степень жесткости цитоплазмы вызывает деформацию ядер клеток печени человека и крыс с циррозом печени. Отсоединение ядра от цитоскелета путем разрушения последнего или при дезорганизации белка, связывающего нук-леоскелет с внутренней и внешней ядер-ными мембранами - несприна 1, восстанавливает сферическую форму ядра [94].
Заключение. Обобщая вышеизложенное, необходимо отметить значительный прогресс в вопросе изучения причин и механизмов подержания формы и размеров клеточного ядра. Не вызывает сомнений, что размер и форма ядра, являются отражением состояния клетки в норме, так и при патологических процессах, и позволяют судить об особенностях протекания тех или иных биологических событий в исследуемых органах. Можно с уверенностью утверждать о том, что количество ДНК в ядре не является фактором, определяющим его размеры и форму, но на ядерную морфологию могут влиять структура и модификация хроматина.
Можно считать доказанным, что ведущими факторами, определяющими размер и форму клеточного ядра, являются цитоскелет, комплекс ядерных пор, ядерная мембрана, эндоплазматический ретикулум, ядерно-цитоплазматический обмен и осмолярность. Дальнейшее изучение фак- торов, влияющих на размер и форму ядра, установление взаимосвязи между его морфологией и процессами, происходящими на тканевом и клеточном уровне, обещает предоставить новые подходы к диагностике, профилактике и лечению ряда заболеваний.
Список литературы Механизмы поддержания и изменений формы и размеров клеточного ядра (обзор)
- Goldman RD, Shumaker DK, Erdos MR, et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2004;101(24):8963-8968. DOI: 10.1073/pnas.0402943101
- Zink D, Fischer AH, Nickerson JA. Nuclear structure in cancer cells. Nat Rev Cancer. 2004;4(9):677-687. DOI: 10.1038/nrc1430
- Katta SS, Smoyer CJ, Jaspersen SL. Destination: inner nuclear membrane. Trends Cell Biol. 2014;24(4):221-9. DOI: 10.1016/j.tcb.2013.10.006
- Veltri RW, Khan MA, Miller MC, et al. Ability to predict metastasis based on pathology findings and alterations in nuclear structure of normal-appearing and cancer peripheral zone epithelium in the prostate. Clin Cancer Res. 2004;10(10):3465-3473. DOI: 10.1158/1078-0432.CCR-03-0635
- Smoyer CJ, Jaspersen SL. Patrolling the nucleus: inner nuclear membrane-associated degradation. Curr Genet. 2019;65(5):1099-1106. DOI: 10.1007/s00294-019-00971-1
- Edens LJ, White KH, Jevtic P, et al. Nuclear size regulation: from single cells to development and disease. Trends Cell Biol. 2013;23(4):151-159. DOI: 10.1016/j.tcb.2012.11.004
- Köhler A, Hurt E. Gene regulation by nucleoporins and links to cancer. Mol Cell. 2010;38(1):6-15. DOI: 10.1016/j.molcel.2010.01.040
- Simon DN, Rout MP. Cancer and the nuclear pore complex. Adv Exp Med Biol. 2014;773:285-307. DOI: 10.1007/978-1-4899-8032-8_13
- Diehl BJ. Time-related changes in size of nuclei of pinealocytes in rats. Cell Tissue Res. 1981;218(2):427-438. DOI: 10.1007/BF00210355
- Weber P, Kula-Eversole E, Pyza E. Circadian control of dendrite morphology in the visual system of Drosophila melanogaster. PLoS One. 2009;4(1):e4290. DOI: 10.1371/journal.pone.0004290
- Hagenauer MH, Perryman JI, Lee TM, Carskadon MA. Adolescent changes in the homeostatic and circadian regulation of sleep. Dev Neurosci. 2009;31(4):276-284. DOI: 10.1159/000216538
- Reinke H, Asher G. Liver size: Waning by day, Waxing by Night. Hepatol. 2018;67(1):441-443. DOI: 10.1002/hep.29506
- Górska-Andrzejak J, Keller A, Raabe T, et al. Structural daily rhythms in GFP-labelled neurons in the visual system of Drosophila melanogaster. Photochem Photobiol Sci. 2005;4(9):721-726. DOI: 10.1039/b417023g
- Slesareva EV, Arav VI, Khayrullin RM, Slesarev SM. Sutochnaya struktura morfofunktsional'noy organizatsii endokrinnoy tkani semennikov pri narushenii epifizarnoy regulyatsii. Morfologicheskie vedomosti. 2009;(3-4):96-99. In Rusian
- Trufakin VA, Shurlygina AV, Michurina SV. Limfoidnaya sistema-tsirkadiannaya vremennaya organizatsiya i desinhronoz. Sibirsky nauchny meditsinsky zhurnal. 2012;32(1);5-12. In Russian
- Walters AD, Bommakanti A, Cohen-Fix O. Shaping the nucleus: factors and forces. J Cell Biochem. 2012;113(9):2813-21. DOI: 10.1002/jcb.24178
- Webster MT, McCaffery JM, Cohen-Fix O. Vesicle trafficking maintains nuclear shape in Saccharomyces cerevisiae during membrane prolifera-tion. J Cell Biol. 2010;13;191(6):1079-88. DOI: 10.1083/jcb.201006083.
- Brandt A, Krohne G, Grosshans J. The farnesylated nuclear proteins KUGELKERN and LAMIN B promote aging-like phenotypes in Drosophila flies. Aging Cell. 2008;7(4):541-51. DOI: 10.1111/j.1474-9726.2008.00406.x
- Scaffidi P, Misteli T. Lamin A-dependent nuclear defects in human aging. Science. 2006;312(5776):1059-63. DOI: 10.1126/science.1127168
- Eriksson M, Brown WT, Gordon LB et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature. 2003;423(6937):293-8. DOI: 10.1038/nature01629
- Capell BC, Collins FS. Human laminopathies: nuclei gone genetically awry. Nat Rev Genet. 2006;7(12):940-52. DOI: 10.1038/nrg1906.
- Versaevel M, Grevesse T, Gabriele S. Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nat Commun. 2012;14;3:671. DOI: 10.1038/ncomms1668
- Jain N, Iyer KV, Kumar A, Shivashankar GV. Cell geometric constraints induce modular gene-expression patterns via redistribution of HDAC3 regulated by actomyosin contractility. Proc Natl Acad Sci U S A. 2013;110(28):11349-54. DOI: 10.1073/pnas.1300801110
- Thomas CH, Collier JH, Sfeir CS, Healy KE. Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc Natl Acad Sci USA. 2002;99(4):1972-7. DOI: 10.1073/pnas.032668799
- Strukov AI, Serov VV. Patologicheskaya anatomiya. 5-e izd. Moskva: Lit-terra, 2020. 880s. In Russian
- Kachi T, Banerji TK, Quay WB. Quantitative cytological analysis of functional changes in adrenomedullary chromaffin cells in normal, sham-operated, and pinealectomized rats in relation to time-of-day: II. Nuclear-cytoplasmic ratio, nuclear size, and pars granulosa of nucleolus. J Pine-al Res. 1988;5(2):141-159. DOI: 10.1111/j.1600-079x.1988.tb00778.x
- Cantwell H, Dey G. Nuclear size and shape control [published online ahead of print, 2021 Nov 11]. Semin Cell Dev Biol. 2021;S1084-9521(21)00276-7. DOI: 10.1016/j.semcdb.2021.10.013
- Jevtić P, Levy DL. Both Nuclear Size and DNA Amount Contribute to Midblastula Transition Timing in Xenopus laevis. Sci Rep. 2017;7(1):7908. DOI: 10.1038/s41598-017-08243-z
- Neumann FR, Nurse P. Nuclear size control in fission yeast. J Cell Biol. 2007;179(4):593-600. DOI: 10.1083/jcb.200708054
- Maeshima K, Iino H, Hihara S, et al. Nuclear pore formation but not nuclear growth is governed by cyclin-dependent kinases (Cdks) during interphase. Nat Struct Mol Biol. 2010;17(9):1065-1071. DOI: 10.1038/nsmb.1878
- Hara Y, Iwabuchi M, Ohsumi K, Kimura A. Intranuclear DNA density affects chromosome condensation in metazoans. Mol Biol Cell. 2013;24(15):2442-2453. DOI: 10.1091/mbc.E13-01-0043
- Gundersen GG, Worman HJ. Nuclear positioning. Cell. 2013;152(6):1376-1389. DOI: 10.1016/j.cell.2013.02.031
- Ramdas NM, Shivashankar GV. Cytoskeletal control of nuclear morphology and chromatin organization. J Mol Biol. 2015;427(3):695-706. DOI: 10.1016/j.jmb.2014.09.008
- Dantas M, Lima JT, Ferreira JG. Nucleus-Cytoskeleton Crosstalk During Mitotic Entry. Front Cell Dev Biol. 2021;9:649899. DOI: 10.3389/fcell.2021.649899
- Schlaitz AL, Thompson J, Wong CC, et al. REEP3/4 ensure endoplasmic reticulum clearance from metaphase chromatin and proper nuclear envelope architecture. Dev Cell. 2013;26(3):315-323. DOI: 10.1016/j.devcel.2013.06.016
- Luxton GW, Gomes ER, Folker ES, et al. Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science. 2010;329(5994):956-9. DOI: 10.1126/science.1189072.
- Khatau SB, Hale CM, Stewart-Hutchinson PJ, et al. A perinuclear actin cap regulates nuclear shape. Proc Natl Acad Sci USA. 2009;106(45):19017-22. DOI: 10.1073/pnas.0908686106
- Gay O, Gilquin B, Nakamura F, et al. RefilinB (FAM101B) targets filamin A to organize perinuclear actin networks and regulates nuclear shape. Proc Natl Acad Sci USA. 2011;108(28):11464-9. DOI: 10.1073/pnas.1104211108
- Crisp M, Liu Q, Roux K, et al. Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol. 2006;172(1):41-53. DOI: 10.1083/jcb.200509124
- Chen B, Co C, Ho CC. Cell shape dependent regulation of nuclear morphology. Biomaterials. 2015;67:129-36. DOI: 10.1016/j.biomaterials.2015.07.017
- Lüke Y, Zaim H, Karakesisoglou I, et al. Nesprin-2 Giant (NUANCE) maintains nuclear envelope architecture and composition in skin. J Cell Sci. 2008;121(11):1887-98. DOI: 10.1242/jcs.019075
- Ramdas NM, Shivashankar GV. Cytoskeletal control of nuclear morphology and chromatin organization. J Mol Biol. 2015;427(3):695-706. DOI: 10.1016/j.jmb.2014.09.008
- Xue JZ, Woo EM, Postow L, et al. Chromatin-bound Xenopus Dppa2 shapes the nucleus by locally inhibiting microtubule assembly. Dev Cell. 2013;27(1):47-59. DOI: 10.1016/j.devcel.2013.08.002
- Doye V, Hurt E. From nucleoporins to nuclear pore complexes. Curr Opin Cell Biol. 1997;9(3):401-411. DOI: 10.1016/s0955-0674(97)80014-2
- Allen NP, Patel SS, Huang L, et al. Deciphering networks of protein interactions at the nuclear pore complex. Molecular & Cellular Proteomics. 2002;1(12):930-946. DOI: 10.1074/mcp.T200012-MCP200
- Mészáros N, Cibulka J, Mendiburo MJ, et al. Nuclear pore basket proteins are tethered to the nuclear envelope and can regulate membrane curva-ture. Dev Cell. 2015;33(3):285-298. DOI: 10.1016/j.devcel.2015.02.017
- Beck M, Hurt E. The nuclear pore complex: understanding its function through structural insight. Nat Rev Mol Cell Biol. 2017;18(2):73-89. DOI: 10.1038/nrm.2016.147
- Jevtić P, Edens LJ, Vuković LD, Levy DL. Sizing and shaping the nucleus: mechanisms and significance. Curr Opin Cell Biol. 2014;28:16-27. DOI: 10.1016/j.ceb.2014.01.003
- Shen X, Yu L, Weir JW, Gorovsky MA. Linker histones are not essential and affect chromatin condensation in vivo. Cell. 1995;82(1):47-56. DOI: 10.1016/0092-8674(95)90051-9
- Dittmer TA, Misteli T. The lamin protein family. Genome Biol. 2011;12(5):222. DOI: 10.1186/gb-2011-12-5-222
- Iwamoto M, Mori C, Kojidani T, et al. Two distinct repeat sequences of Nup98 nucleoporins characterize dual nuclei in the binucleated ciliate tetrahymena. Curr Biol. 2009;19(10):843-847. DOI: 10.1016/j.cub.2009.03.055
- Jevtić P, Edens LJ, Li X, et al. Concentration-dependent Effects of Nuclear Lamins on Nuclear Size in Xenopus and Mammalian Cells. J Biol Chem. 2015;290(46):27557-27571. DOI: 10.1074/jbc.M115.673798
- Shumaker DK, Lopez-Soler RI, Adam SA, et al. Functions and dysfunctions of the nuclear lamin Ig-fold domain in nuclear assembly, growth, and Emery-Dreifuss muscular dystrophy. Proc Natl Acad Sci USA. 2005;102(43):15494-15499. DOI: 10.1073/pnas.0507612102
- Dechat T, Pfleghaar K, Sengupta K, et al. Nuclear lamins: major factors in the structural organization and function of the nucleus and chroma-tin. Genes Dev. 2008;22(7):832-853. DOI: 10.1101/gad.1652708
- Gruenbaum Y, Margalit A, Goldman RD, et al. The nuclear lamina comes of age. Nat Rev Mol Cell Biol. 2005;6(1):21-31. DOI: 10.1038/nrm1550
- Mukherjee RN, Chen P, Levy DL. Recent advances in understanding nuclear size and shape. Nucleus. 2016;7(2):167-186. DOI: 10.1080/19491034.2016.1162933
- Stick R, Hausen P. Changes in the nuclear lamina composition during early development of Xenopus laevis. Cell. 1985;41(1):191-200. DOI: 10.1016/0092-8674(85)90073-x
- Lehner CF, Stick R, Eppenberger HM, Nigg EA. Differential expression of nuclear lamin proteins during chicken development. J Cell Biol. 1987;105(1):577-587. DOI: 10.1083/jcb.105.1.577
- Röber RA, Weber K, Osborn M. Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: a developmental study. Development. 1989;105(2):365-378.
- Paradisi M, McClintock D, Boguslavsky RL, et al. Dermal fibroblasts in Hutchinson-Gilford progeria syndrome with the lamin A G608G muta-tion have dysmorphic nuclei and are hypersensitive to heat stress. BMC Cell Biol. 2005;6:27. DOI: 10.1186/1471-2121-6-27
- Capell BC, Erdos MR, Madigan JP, et al. Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA. 2005;102(36):12879-84. DOI: 10.1073/pnas.0506001102
- Mallampalli MP, Huyer G, Bendale P, et al. Inhibiting farnesylation reverses the nuclear morphology defect in a HeLa cell model for Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA. 2005;102(40):14416-21. DOI: 10.1073/pnas.0503712102
- Kim S, Li Q, Dang CV, Lee LA. Induction of ribosomal genes and hepatocyte hypertrophy by adenovirus-mediated expression of c-Myc in vivo. Proc Natl Acad Sci USA. 2000;97(21):11198-11202. DOI: 10.1073/pnas.200372597
- Zatloukal K, Denk H, Spurej G, Hutter H. Modulation of protein composition of nuclear lamina. Reduction of lamins B1 and B2 in livers of griseofulvin-treated mice. Lab Invest. 1992;66(5):589-597
- Marín MP, Tomas M, Esteban-Pretel G, et al. Chronic ethanol exposure induces alterations in the nucleocytoplasmic transport in growing as-trocytes. J Neurochem. 2008;106(4):1914-1928. DOI: 10.1111/j.1471-4159.2008.05514.x
- Jevtić P, Levy DL. Nuclear size scaling during Xenopus early development contributes to midblastula transition timing. Curr Biol. 2015;25(1):45-52. DOI: 10.1016/j.cub.2014.10.051
- Golden A, Liu J, Cohen-Fix O. Inactivation of the C. elegans lipin homolog leads to ER disorganization and to defects in the breakdown and reassembly of the nuclear envelope. J Cell Sci. 2009;122(Pt 12):1970-1978. DOI: 10.1242/jcs.044743
- Campbell JL, Lorenz A, Witkin KL, et al. Yeast nuclear envelope subdomains with distinct abilities to resist membrane expansion. Mol Biol Cell. 2006;17(4):1768-1778. DOI: 10.1091/mbc.e05-09-0839
- Edens LJ, Levy DL. cPKC regulates interphase nuclear size during Xenopus development. J Cell Biol. 2014;206(4):473-483. DOI: 10.1083/jcb.201406004
- Björling E, Lindskog C, Oksvold P, et al. A web-based tool for in silico biomarker discovery based on tissue-specific protein profiles in normal and cancer tissues. Mol Cell Proteomics. 2008;7(5):825-844. DOI: 10.1074/mcp.M700411-MCP200
- van de Velde HJ, Senden NH, Roskams TA, et al. NSP-encoded reticulons are neuroendocrine markers of a novel category in human lung cancer diagnosis. Cancer Res. 1994;54(17):4769-4776.
- Senden N, Linnoila I, Timmer E, et al. Neuroendocrine-specific protein (NSP)-reticulons as independent markers for non-small cell lung cancer with neuroendocrine differentiation. An in vitro histochemical study. Histochem Cell Biol. 1997;108(2):155-165. DOI: 10.1007/s004180050157
- Hah J, Kim DH. Deciphering Nuclear Mechanobiology in Laminopathy. Cells. 2019;8(3):231. Published 2019 Mar 11. DOI: 10.3390/cells8030231
- Bahmanyar S, Schlieker C. Lipid and protein dynamics that shape nuclear envelope identity. Mol Biol Cell. 2020;31(13):1315-1323. DOI: 10.1091/mbc.E18-10-0636
- Barger SR, Penfield L, Bahmanyar S. Coupling lipid synthesis with nuclear envelope remodeling. Trends Biochem Sci. 2022;47(1):52-65. DOI: 10.1016/j.tibs.2021.08.009
- Romanauska A, Köhler A. The Inner Nuclear Membrane Is a Metabolically Active Territory that Generates Nuclear Lipid Droplets. Cell. 2018;174(3):700-715.e18. DOI: 10.1016/j.cell.2018.05.047
- Kume K, Cantwell H, Neumann FR, et al. A systematic genomic screen implicates nucleocytoplasmic transport and membrane growth in nucle-ar size control. PLoS Genet. 2017;13(5):e1006767. DOI: 10.1371/journal.pgen.1006767
- Ganguly A, Bhattacharjee C, Bhave M, et al. Perturbation of nucleo-cytoplasmic transport affects size of nucleus and nucleolus in human cells. FEBS Lett. 2016;590(5):631-643. DOI: 10.1002/1873-3468.12077
- Irianto J, Swift J, Martins RP, et al. Osmotic challenge drives rapid and reversible chromatin condensation in chondrocytes. Biophys J. 2013;104(4):759-769. DOI: 10.1016/j.bpj.2013.01.006
- Guilak F, Tedrow JR, Burgkart R. Viscoelastic properties of the cell nucleus. Biochem Biophys Res Commun. 2000;269(3):781-786. DOI: 10.1006/bbrc.2000.2360
- Finan JD, Guilak F. The effects of osmotic stress on the structure and function of the cell nucleus. J Cell Biochem. 2010;109(3):460-467. DOI: 10.1002/jcb.22437
- Efremov AK, Hovan L, Yan J. Size of the cell nucleus and its effect on the chromatin structure in living cells. bioRxiv. 2021;2021.07.27.453925
- Mukherjee RN, Chen P, Levy DL. Recent advances in understanding nuclear size and shape. Nucleus. 2016;7(2):167-186. DOI: 10.1080/19491034.2016.1162933
- Dahl KN, Kahn SM, Wilson KL, Discher DE. The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. J Cell Sci. 2004;117(Pt 20):4779-4786. DOI: 10.1242/jcs.01357
- Finan JD, Chalut KJ, Wax A, Guilak F. Nonlinear osmotic properties of the cell nucleus. Ann Biomed Eng. 2009;37(3):477-491. DOI: 10.1007/s10439-008-9618-5
- Newport JW, Wilson KL, Dunphy WG. A lamin-independent pathway for nuclear envelope assembly. J Cell Biol. 1990;111(6 Pt 1):2247-2259. DOI: 10.1083/jcb.111.6.2247
- Yang L, Guan T, Gerace L. Lamin-binding fragment of LAP2 inhibits increase in nuclear volume during the cell cycle and progression into S phase. J Cell Biol. 1997;139(5):1077-1087. DOI: 10.1083/jcb.139.5.1077
- Meng H, Andresen K, van Noort J. Quantitative analysis of single-molecule force spectroscopy on folded chromatin fibers. Nucleic Acids Res. 2015;43(7):3578-3590. DOI: 10.1093/nar/gkv215
- Thiam HR, Wong SL, Qiu R, et al. NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin deconden-sation and nuclear envelope rupture. Proc Natl Acad Sci USA. 2020;117(13):7326-7337. DOI: 10.1073/pnas.1909546117
- Scaffidi P, Misteli T. Lamin A-dependent nuclear defects in human aging. Science. 2006;312(5776):1059-1063. DOI: 10.1126/science.1127168
- Singla A, Griggs NW, Kwan R, et al. Lamin aggregation is an early sensor of porphyria-induced liver injury. J Cell Sci. 2013;126(Pt 14):3105-3112. DOI: 10.1242/jcs.123026/
- Tashiro K, Satoh A, Utsumi T, et al. Absence of Nogo-B (reticulon 4B) facilitates hepatic stellate cell apoptosis and diminishes hepatic fibrosis in mice. Am J Pathol. 2013;182:786–95
- Fujihira H, Masahara-Negishi Y, Akimoto Y, et al. Liver-specific deletion of Ngly1 causes abnormal nuclear morphology and lipid metabolism under food stress. Biochim Biophys Acta Mol Basis Dis. 2020;1866(3):165588. DOI: 10.1016/j.bbadis.2019.165588)
- Guixé-Muntet S, Ortega-Ribera M, Wang C, et al. Nuclear deformation mediates liver cell mechanosensing in cirrhosis. JHEP Rep. 2020;2(5):100145. DOI: 10.1016/j.jhepr.2020.100145