Метаболическая регуляция функций натуральных киллеров

Автор: Орлова Екатерина Григорьевна

Журнал: Вестник Пермского университета. Серия: Биология @vestnik-psu-bio

Рубрика: Иммунология

Статья в выпуске: 1, 2023 года.

Бесплатный доступ

Согласно современным представлениям, трансформация фенотипа и функций натуральных киллеров (NK-клеток) ассоциирована с метаболическим репрограммированием, а именно преимущественным использованием клеткой специфических метаболических путей для получения энергии. Ключевыми молекулами, участвующими в контроле метаболических программ NK-клеток, являются мишень для рапамицина в клетках млекопитающих (mTOR) и аденозинмонофосфат-активируемая протеинкиназа (AMPK). Модуляция активности mTOR и AMPK различными агентами определяет метаболическое репрограммирование, изменение фенотипа NK-клеток и функциональной активности. Особенности метаболической регуляции эффекторных функций NK-клеток зависят от их локализации, степени зрелости, продолжительности и специфичности активационных сигналов. Особое внимание уделяется изменению фенотипа, функциональной и метаболической активности NK-клеток при беременности, что ассоциировано с формированием периферической иммунной толерантности. Изучение метаболической регуляции функциональной активности NK-клеток необходимо для повышения эффективности NK-клеточной терапии.

Еще

Nk-клетки, метаболизм, децидуальный фенотип, иммунная толерантность, беременность

Короткий адрес: https://sciup.org/147240457

IDR: 147240457   |   DOI: 10.17072/1994-9952-2023-1-83-94

Список литературы Метаболическая регуляция функций натуральных киллеров

  • Орлова Е.Г. и др. Особенности экспрессии молекул Tim-3, CD9, CD49a лимфоцитами периферической крови при физиологической беременности // Вестник уральской медицинской академической науки. 2022. Т. 19, № 5. C. 461-473,
  • Allan D.S. et al. TGF-ß affects development and differentiation of human natural killer cell subsets // Eur. J. Immunol. 2010. Vol. 40(8). P. 2289-2295.
  • Assmann N. et al. Srebp-controlled glucose metabolism is essential for NK cell functional responses // Nat. Immunol. 2017. Vol. 18. P. 1197-1206.
  • Beziat V. et al. NK cell terminal differentiation: correlated stepwise decrease of NKG2A and acquisition of KIRs // PLoS One. 2010. Vol. 5(8). e11966.
  • Bjorkstrom N.K., Ljunggren H.G., Michaelsson J. Emerging insights into natural killer cells in human peripheral tissues // Nat. Rev. Immunol. 2016. Vol. 16(5). P. 310-320.
  • Carlino C. et al. Recruitment of circulating NK cells through decidual tissues: a possible mechanism controlling NK cell accumulation in the uterus during early pregnancy // Blood. 2008. Vol. 111(6). P. 3108-3115.
  • Cerdeira A.S. et al. Conversion of peripheral blood NK cells to a decidual NK-like phenotype by a cocktail of defined factors // J. of immunol. 2013. Vol. 190(8). P. 3939-3948.
  • Chapman N.M., Shrestha S., Chi H. Metabolism in Immune Cell Differentiation and Function // Adv. Exp. Med. Biol. 2017. Vol. 1011. P. 1-85.
  • Chiossone L. et al. Maturation of mouse NK cells is a 4-stage developmental program // Blood. 2009. Vol. 113(22). P. 5488-5496.
  • Chiossone L. et al. In vivo generation of decidual natural killer cells from resident hematopoietic progenitors // Haematologica. 2014. Vol. 99(3). P. 448-457.
  • Crespo A.C., et al. Decidual NK Cells Transfer Granulysin to Selectively Kill Bacteria in Trophoblasts // Cell. 2020. Vol. 182(5). P. 1125-1139.
  • Donnelly R.P. et al. mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function // J. Immunol. 2014. Vol. 193. P. 4477-4484.
  • Erlebacher A. Immunology of the maternal-fetal interface // Annu. Rev. Immunol. 2013. Vol. 31. P. 387411.
  • Fu B. et al. Natural Killer Cells Promote Fetal Development through the Secretion of Growth-Promoting Factors // Immunity. 2017. Vol. 47(6), P. 1100-1113.
  • Husain Z., Seth P., Sukhatme V.P. Tumor-derived lactate and myeloid-derived suppressor cells: Linking metabolism to cancer immunology // Oncoimmunology. 2013. Vol. 2(11). e26383.
  • Jiang L. et al. Extracellular Vesicle-Mediated Secretion of HLA-E by Trophoblasts Maintains Pregnancy by Regulating the Metabolism of Decidual NK Cells // International journal of biological sciences. 2021. Vol. 17(15). P. 4377-4395.
  • Jin X. et al. Decidualization-derived cAMP regulates phenotypic and functional conversion of decidual NK cells from CD56dimCD16- NK cells // Cell Mol. Immunol. 2021. Vol. 18(6). P. 1596-1598.
  • Keating S.E. et al. Metabolic reprogramming supports IFN-y production by CD56bright NK cells // J. Immunol. 2016. Vol. 196(6). P. 2552-2560.
  • Keskin D.B. et al. TGF beta promotes conversion of CD16+ peripheral blood NK cells into CD16- NK cells with similarities to decidual NK cells // Proc. Natl. Acad. Sci. USA. 2007. Vol. 104(9). P. 3378-3383.
  • Kim K.Y. et al. Adiponectin is a negative regulator of NK cell cytotoxicity // J. Immunol. 2006. Vol. 176(10). P. 5958-5664.
  • Koopman L.A. et al. Human decidual natural killer cells are a unique NK cell subset with immunomodu-latory potential // The J. of exp. medicine. 2003. Vol. 198(8). P. 1201-1212.
  • Lee C.L. et al. Glycodelin-A stimulates the conversion of human peripheral blood CD16-CD56bright NK cell to a decidual NK cell-like phenotype // Hum. Reprod. 2019. Vol. 34(4). P. 689-701.
  • Marcais A. et al. The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells // Nat. Immunol. 2014. Vol. 15. P. 749-757.
  • Martrus G. et al. Proliferative capacity exhibited by human liver-resident CD49a+CD25+NK cells // PloS One. 2017. Vol. 12(8), e0182532.
  • Melsen J.E. et al. Human Circulating and Tissue-Resident CD56(bright) Natural Killer Cell Populations // Front. Immunol. 2016. Vol. 7. P. 262.
  • Montaldo E. et al. Group 3 innate lymphoid cells (ILC3s): Origin, differentiation, and plasticity in humans and mice // Eur. J. Immunol. 2015. Vol. 45(8). P. 2171-2182.
  • Moretta A. et al. Natural cytotoxicity receptors that trigger human NK-cell-mediated cytolysis // Immunol. Today. 2000. Vol. 21(5). P. 228-234.
  • Muller-Durovic B. et al. Killer cell lectin-like receptor G1 inhibits NK cell function through activation of adenosine 5'-monophosphateactivated protein kinase // J. Immunol. 2016. Vol. 197(7). P. 2891-2899.
  • Nandagopal N. et al. The Critical Role of IL-15-PI3K-mTOR Pathway in Natural Killer Cell Effector Functions // Front Immunol. 2014. Vol. 5. P. 187.
  • O'Brien K.L., Finlay D.K. Immunometabolism and natural killer cell responses // Nat. Rev. Immunol. 2019. Vol. 19(5). P. 282-290.
  • Poli A. et al. CD56bright natural killer (NK) cells: an important NK cell subset // Immunology. 2009. Vol. 126(4). P. 458-465.
  • Saito S. et al. The balance between cytotoxic NK cells and regulatory NK cells in human pregnancy // J. of Reprod. Immunol. 2008. Vol. 77(1), P. 14-22.
  • Salzberger W. et al. Tissue-resident NK cells differ in their expression profile of the nutrient transporters Glut1, CD98 and CD71 // PLoS One. 2018. Vol. 13. e0201170.
  • Sánchez-Rodríguez E.N. et al. Persistence of decidual NK cells and KIR genotypes in healthy pregnant and preeclamptic women: a case-control study in the third trimester of gestation // Reprod. Boil. and endocrinol. 2011. Vol. 9. P. 8.
  • Shojaei Z. et al. Functional prominence of natural killer cells and natural killer T cells in pregnancy and infertility: A comprehensive review and update // Pathol. Res. Pract. 2022. Vol. 238. P. 154062.
  • Slattery K. et al. TGFß drives NK cell metabolic dysfunction in human metastatic breast cancer // J. Im-munother. Cancer. 2021. Vol. 9(2). e002044.
  • Song Yan et al. The mTORC1 Signaling Support Cellular Metabolism to Dictate Decidual NK Cells Function in Early Pregnancy // Front Immunol. 2022. Vol. 13. P. 771732.
  • Sotnikova N. et al. Interaction of decidual CD56+ NK with trophoblast cells during normal pregnancy and recurrent spontaneous abortion at early term of gestation // Scandinavian journal of immunology. 2014. Vol. 80(3), P. 198-208.
  • Sun et al. Tim-3 is up regulated in NK cells during early pregnancy and inhibits NK cytotoxicity toward trophoblast in galectin-9 dependent pathway // PloS One. 2016. Vol. 11(1). e0147186.
  • Tessmer M.S. et al. KLRG1 binds cadherins and preferentially associates with SHIP-1 // Int. Immunol. 2007. Vol. 19(4). P. 391-400.
  • Vacca P. et al. Origin, phenotype and function of human natural killer cells in pregnancy // Trends Immunol. 2011. Vol. 32. P. 517-523.
  • van den Heuvel M.J. et al. Trafficking of circulating pro-NK cells to the decidualizing uterus: regulatory mechanisms in the mouse and human // Immunol. Invest. 2005. Vol. 34(3). P. 273-293.
  • Viel S. et al. TGF-ß inhibits the activation and functions of NK cells by repressing the mTOR pathway // Sci. Signal. 2016. Vol. 9(415). ra19.
  • Wang Z. et al. (). IL-10 Enhances Human Natural Killer Cell Effector Functions via Metabolic Reprogramming Regulated by mTORC1 Signaling // Frontiers in immunology. 2021. Vol. 12. P. 619195.
  • Yan S. et al. The mTORC1 Signaling Support Cellular Metabolism to Dictate Decidual NK Cells Function in Early Pregnancy // Frontiers in immunology.2022. Vol. 13. P. 771732.
  • Yan W.H. et al. Possible roles of KIR2DL4 expression on uNK cells in human pregnancy // Am. J. Re-prod. Immunol. 2007. Vol. 57(4). P. 233-242.
  • Zaiatz-Bittencourt V., Finlay D.K., Gardiner C.M. Canonical TGF-b signaling pathway represses human NK cell metabolism // J. Immunol. 2018. Vol. 200. P. 3934-3941.
Еще
Статья научная